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RNA-binding proteins (RBPs) are multi-faceted proteins in the regulation of RNA or its RNA splicing, localisation,

stability, and translation.

RNA binding protein splicing factor translation regulator

| 1. Introduction

RNA-binding proteins (RBPs) are critical RNA regulators responsible for modulating post-transcriptional events in
the cell. RBPs can recognize and interact with binding motifs called RNA recognition motifs (RRM) and/or RNA
structure to form ribonucleoprotein (RNP) complexes for the regulation of various RNA processes such as RNA
stability, alternative pre-mRNA splicing, mRNA decay, translocation, post-translational nucleotide modifications, and
RNA localization (Eigure 1) L1121,
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Figure 1. Schematic diagram summarizing the various roles of RNA binding proteins (RBPs). RBPs have

numerous roles in RNA processing and translation. Four such functions of RBPs are demonstrated
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diagrammatically above: alternative splicing, RNA export, protein translation, RNA degradation, and stabilization.

Figure created using Biorender.com.

2. RBPs in the Pathogenesis of Diabetes and Cardiovascular
Disease

Diabetes mellitus (DM) is an increasingly prevalent global health burden . DM is a lifelong disease, characterized
by chronic hyperglycemia. DM is highly associated with an increased risk of debilitating secondary morbidities
manifesting in macrovascular disease (atherosclerosis, ischemic stroke, coronary artery disease) and
microvascular disease (diabetic retinopathy, neuropathy, and nephropathy) . Close to 10% of worldwide diabetes
diagnoses are categorized as Type 1. The remaining majority are diagnosed as Type 2 &, where cells become
increasingly resistant to insulin action [, leading to impaired glucose homeostasis with cells unable to internalize
circulating blood glucose. Chronic hyperglycemia causes systemic damage to the vasculature triggering
multisystemic conditions such as cardiovascular disease (CVD). Additionally, due to the frequency of CVD
occurrence in diabetes, it is often considered a CVD in itself. Currently, there is no curative therapy available for
diabetes-associated CVD. With rising rates of diabetes, there lies a deepening need for knowledge into the
mechanisms behind hyperglycemia-related cardiovascular damage. In vascular endothelial cells (ECs),
hyperglycemia has been determined to contribute to a substantial change of gene expression. Transcriptomic
analytical assays have uncovered a wide variety of candidate genes implicated in cellular functions such as
angiogenesis, coagulation, vascular tone, adhesion, and more. This vascular EC gene expression is tightly
controlled by transcriptional and post-transcriptional regulatory mechanisms, the latter including regulation of pre-
mRNA to mRNA processing, transport, decay and protein translation (. Precise regulation of these complex post-
transcriptional modifications in the RNA network is crucial for the normal function of vascular ECs and the
endothelial system. In diabetes, a plethora of RBP-regulated RNA networks are involved in the dysfunction of the
vascular endothelium [ In this section, we will review some of the most common RBPs dysregulated in the

pathogenenesis of DM and CVD and their epigenetic effects.

For instance, RNA Binding Fox-1 Homolog 2 (RBFOX2), regulates alternative splicing and is upregulated in the
diabetic heart, controlling splicing of genes involved in diabetic cardiomyopathy by binding to target RNA motifs
associated with protein trafficking and cell apoptosis RI19. Additionally, Human Antigen R (HuR) also known with its
alternative name ELAVL1, is a ubiquitously expressed RBP, which is upregulated and activated under high glucose
and in diabetes 1. HUR binds to specific domains known as AU-rich elements (ARE) in the 3'UTRs of target
genes that play a role in inflammation and diabetic nephropathy (1211311141 Once it is activated, it translocates to the
cytoplasm to bind its MRNA targets affecting their stability and translation 22, Tristetraprolin (TTP) binds to 3' UTR
ARE region that results in mRNA destabilization and decay 8. TTP is minimally expressed in healthy aortas but
significantly heightened in affected macrophage foam cells as well as ECs of atherosclerotic lesions 22, In another
example, Quaking (QKI), an RBP member of the Signal Transduction and Activation of RNA (STAR) protein family
and some of its isoforms—namely QKI5, QKI6, QKI7—have been associated with vascular development 281, In our

lab, we have previously shown that, compared to controls, there are reduced QKI5 levels in cardiac vessels of
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diabetic mice, therefore displaying the key status of QKI5 within the diabetic framework of vessel dysfunction. In
addition, as we have also reported 18 QKI5 played a crucial role in differentiating ECs from induced pluripotent
stem cells (iPSCs) via stabilization of VE-cadherin and Vascular Endothelial Growth Factor Receptor 2 (VEGFR2)
activation through Signal Transducer and Activator of Transcription 3 (STAT3) signaling. Furthermore, we showed
QKI-7 to bind and promote mRNA target degradation such as of VE-cadherin, while the knockdown of QKI7 in a
diabetic mouse model of hindlimb ischemia significantly restored reperfusion and blood flow in vivo 22!,

RBPs are also implicated in the dysfunction of ECs under diabetic conditions in relation to their association with
non-protein coding RNAs (ncRNAs), which include long noncoding RNAs (IncRNAs). The latter are, in fact,
responsible for the preponderance of gene transcripts and act as positive or negative regulators based on their
interactions with RBPs (2%, The importance of the RBP and IncRNAs system as a fundamental part of healthy
cellular function through regulation of epigenetic machineries is largely acknowledged 2. In recent years, data
from numerous studies has showed a correlation between abnormal levels of IncRNAs and different diseases such
as diabetes. For example, the levels of Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) were
significantly elevated both in vivo (in retinal ECs of a streptozotocin (STZ) diabetic rat model) and in vitro when
human umbilical vein endothelial cells (HUVECSs) were treated with high glucose. Short hairpin RNA (shRNA)
knockdown of MALAT1 reduced vascular dysfunction and also decreased reactive oxygen species (ROS) levels in
hyperglycemic ECs signifying its connection with diabetic retinopathy and EC dysfunction 22231, Similarly, under
diabetic conditions, myocardial infarction associated transcript (MIAT) IncRNA is elevated, as data from studies of
diabetic retinas and high-glucose treated ECs have shown. Furthermore, knockdown of MIAT reversed the
dysfunction 24, More such examples of INncRNA dysregulation in diabetic conditions exist as in the case of
increased antisense noncoding RNA in the INK4 Locus (ANRIL) 28] promoting pathogenic angiogenesis 22 or in
the case of Maternally Expressed Gene 3 (MEG3), which had reduced levels in the retinal ECs as shown in an STZ

model of diabetic mice [28],

| 3. RBPs and Their Role in Neurodegenerative Disease

Even though the functional mechanisms of RBPs are still not fully elucidated, more recent evidence has indicated
that RBPs are key players in the preservation and integrity of neurons. Any defects and alterations in the function
of RBPs and in RNA metabolism arising from mutations can cause several neurodegenerative diseases that affect
the central nervous system, such as frontotemporal lobar degeneration (FTD), amyotrophic lateral sclerosis (ALS),
fragile X syndrome (FXS), or spinal muscular atrophy (SMA). Other diseases usually associated with aging and
that can be affected by RBP dysregulation include Alzheimer’s disease (AD) and Parkinson’s disease (PD). The
increasing aging global population has additionally resulted in an increase in the number of worldwide dementia
cases, despite a relative decrease in developed countries 24, In the case of ALS for instance, analytical
investigations have revealed a strong genetic relationship between mutations of RBP-encoding genes like Ataxin 2
(ATXNZ2), Heterogeneous Nuclear Ribonucleoprotein A1 (hnRNPA1), Matrin 3 (MATR3) or TIA1 Cytotoxic Granule
Associated RNA Binding Protein (TIA-1), and development and progression of the disease 28129 [ ikewise, in FTD,

which shares many common characteristics with ALS BB fragmentation of RBPs such as TAR DNA-binding
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protein 43 (TDP-43) in the cytoplasm, has been shown to advance the onset of the disease 233, |n the case of
SMA, a serious motor neuron disease, small molecule drug analogs of RG-7916 (SMN-C2 or -C3) were found to
selectively regulate alternative splicing of Survival of Motor Neuron 2 (SMN2) by binding to the gene’s pre-mRNA
and increasing the affinity of the RBP Far Upstream Element Binding Protein 1 (FUBP1) to it 4. Another
neurological syndrome Paraneoplastic opsoclonus-myoclonus ataxia (POMA) is caused by autoantibody secretion
against the RBP neuro-oncological ventral antigen 1 and 2 (Nova 1, Nova 2) B3, which are neuron-specific found
in the nucleus and regulate RNA splicing 28, In another example, myotonic dystrophy (MD) which commonly
presents in patients as muscular degeneration, is also characterized by aberrant RNA splicing; CUG triplet repeat
(CUGBP) has been specifically linked to MD through its interaction with myotonic dystrophy protein kinase (DMPK)
MRNA 7,

These types of neurological diseases usually present with aggressive and irreversible characteristics that can
prove devastating, and on many occasions even fatal, such as permanent neuron loss, which involves neural cells
such as microglia and astrocytes. In neurodegenerative disease a great deal of attention has been concentrated on
the different protein aggregates; however, it is of utmost importance to also focus on additional avenues that
involve RNA and post transcriptional modifications as a pathogenic component of neurodegenerative disease 28
B9 |n neurons, looking at the high incidence of RNA transport granules may explain why RBP dysfunction can
initiate neuronal disease. The RNA granules creation and aggregate formation in a cell's cytoplasm has been
considered to be pathogenic in nature. During cellular stress, RBPs like those with low complexity domains (LCD),
such as FUS RNA binding protein (FUS) or hnRNPA1 translocate from the nucleus, where they are usually
present, to the cytoplasm and localize in granules 291 Once there, they transiently form droplet organelles 42
with different functions based on their components [43l. Higher RBP concentrations can change these functions and
lead to the polymerization of LCDs and the creation of amyloid-like fibers and insoluble aggregates 4. Studies on
these aggregates are giving rise to hypotheses that in neurons affected by dementias such as ALS or AD,
disturbances such as mutations in RBPs play a role in impairing their regular physiological function. In the case of
dementias such as AD, a study on RBP-containing stress granules showed their elevated accumulation in the
brains of transgenic mice used as a model of tauopathy 2. Furthermore, these granules have an interconnecting
role with miRNAs, since the latter interact with RBP to regulate protein translation 28 adding an additional layer of

complexity.

In general, mutations in the proteins associated with disease increase their propensity for higher aggregation,
shifting the balance towards increased creation of more stable, less soluble and, thus, more persistent, stress
granules, including secondary granules, which are usually associated with disease. Equally, approaches in
neuroprotective therapeutics are directing their efforts against pathogenesis by reducing the creation of stress

granules and restoring the balance 47,
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