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1. Sarcopenia

One of the characteristic features of aging is the progressive loss of muscle mass, a nosological syndrome called

sarcopenia. It is also a pathological risk factor for many clinically adverse outcomes in older adults. During the aging

process, while slow-twitch muscle fibers (type I, which relies on aerobic respiration for muscle endurance) remain largely

unchanged, the mass of fast-twitch fibers (type II, which determines muscle power) is significantly reduced via the

progressive denervation and reinnervation processes . In addition, the complex fiber-type transformation, which

provides plasticity to muscles to adapt to developmental and environmental changes, requires tightly regulated proteolysis

to remove the existing fibers, and this pathologic acceleration of proteolysis is implicated in sarcopenia, the age-related

loss of muscle mass and function . In sarcopenic muscle, type II fibers decrease much faster than type I. In 2019,

European Working Group of Sarcopenia in Older People (EWGSOP2) classified sarcopenia into three stages: probable

sarcopenia, confirmed sarcopenia, and severe sarcopenia . However, despite its intuitive nosological definition, a

consensus on the operational definition of sarcopenia has yet to be achieved.

Based on the meta-analysis, the overall prevalence of sarcopenia is approximately 10% in the population aged 60 years

or older (without gender differences) . Given this high prevalence and the fact that ~2.1 billion people are expected to be

more than 60 years old by the year 2025 , sarcopenia will be a major healthcare issue for both patients and the society.

Therefore, in addition to physical exercise, nutritional strategies are uniquely important as an effective preventive measure

against sarcopenia, as well as the accompanying frailty and disabilities. The homeostatic imbalance between protein

synthesis and degradation in the geriatric muscle probably originates from dysregulation of complex signaling pathways 

. Therefore, understanding the mechanisms of sarcopenia is essential to identify the targets for pharmacological

interventions to prevent or treat sarcopenia.

2. Treatment Approach for Sarcopenia

The primary treatment approach is resistance exercise. Previously, endurance training was considered not effective to

improve muscle mass or strength, but it is now generally accepted that the ATP-producing endurance training and balance

training, combining resistance and endurance trainings, are both preventive and therapeutic to age-induced sarcopenia of

skeletal muscles . Physical training can restore the aged muscle’s sensitivity to protein intake, which subsequently

produces anabolic stimuli to facilitate muscle protein synthesis. Potentially effective substances include anabolic steroids,

myostatin (natural muscle growth antagonist) inhibitors, ghrelin agonists, and antioxidants. Several supplements have

been suggested to produce beneficial muscle regenerative effects, for example, essential amino acids, such as leucine,

creatine monohydrate, omega-3 polyunsaturated fatty acid (PUFA), vitamin D, vitamin B , folic acid, and magnesium 

. De Spiegeleer et al. identified seven systematic reviews or meta-analyses, and found that vitamin D and testosterone

can improve muscle mass, muscle strength and physical performance in subjects aged over 65 years .

3. Therapeutic Potentials of DHA in Sarcopenia by Modulating Muscle
Protein Catabolism

Omega-3 PUFAs have been shown to reduce the development of sarcopenia in the older population by positively

modulating intracellular metabolic signals . However, how omega-3 PUFAs affect the cellular protein catabolism has

not extensively studied yet on the molecular level. We previously reported that docosahexaenoic acid (DHA), a major

dietary omega-3 PUFA, effectively delayed proteasomal degradation of muscle proteins in a cellular atrophy model .
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The inhibitory effect of DHA on protein degradation might originate from the generation of excess proteasome substrates

through oxidation, which suppresses cellular proteasome activity by accumulating the hard-to-degrade substrates. On the

contrary, DHA appears to induce autophagy in many cancer cell lines via p53-mediated AMPK/mTOR signaling . This

phenomenon may reflect the negative feedback communication between the two catabolic systems, which are not

independent, but are, in fact, connected by a highly regulated negative feedback crosstalk . In this article, we

review the mechanisms of sarcopenia development and progression in the context of protein homeostasis (proteostasis),

focusing on DHA as a novel sarcopenia-targeting molecule. We address the recent understanding of muscle protein

degradation via the ubiquitin–proteasome system (UPS) and the autophagy–lysosome system (ALS) during sarcopenia.

4. Conclusion and Future Perspectives

The skeletal muscle accounts for approximately 40% of total body weight . In addition to providing locomotive power,

muscle also serves as a reserve of readily available peptides and proteins. Recent progress in sarcopenia research

clearly indicates that muscle homeostasis is the result of a precise balance between the anabolic and catabolic

processes. A small decrease in synthesis or increase in degradation, if sustained, can lead to a devastating pathological

condition. The term sarcopenia was introduced nearly 20 years ago; now, with the worldwide population rapidly aging, this

disease is currently gaining more considerable research interest and public attention. Although muscle mass and muscle

strength are not always correlated, it is possible that the suppression of muscle protein breakdown is critical for the

prevention and treatment of sarcopenia. Understanding detailed mechanisms involved in control of age-related changes in

muscle proteins might offer a new therapeutic strategy for patients with sarcopenia.

Omega-3 PUFA supplements might be an effective therapy to prevent or slow down sarcopenia. A number of studies

based on rodents and humans have reported enhanced anabolic signaling in skeletal muscle . Studies with C2C12

myotubes or fasted mice have demonstrated that treatment with EPA, but not DHA, significantly increased protein

synthesis and decreased protein breakdown . Many studies indicate EPA may effectively attenuate the UPS-

mediated muscle protein degradation in cachexia murine models . The mechanism of action mediating NF-κB

inhibition appeared to be similar to the antitumor activity of bortezomib on multiple myeloma. Although the effects and

mechanistic details of DHA on sarcopenia remain to be further elucidated, our current model suggests that DHA exerts its

beneficial effects on muscle atrophy by decreasing proteasomal proteolytic activity by blocking it with oxidized proteins

and excess proteasome substrates. However, the results regarding the effectiveness of DHA supplementation in

attenuating muscle atrophy in humans are somewhat contradictory. In the RCTs performed by Smith et al., dietary

supplementation with omega-3 fatty acids (containing 1.86 g EPA and 1.50 g DHA) significantly increased muscle protein

synthesis delays the normal decline in muscle mass and function in older individuals  while a direct action of EPA

and DHA on muscle protein synthesis or degradation was not investigated. Moreover, an 8-week administration of DHA

preserved fasting (48 h)-induced muscle atrophy and proteolysis with upregulated autophagy . The concentration,

duration, and types of omega-3 PUFAs used in each experiment may directly affect the outcomes. Moreover, cells or

organisms may have diverse and sometimes contradictory responses to DHA, which probably depend on the levels of

oxidative stress induction.

Growing evidence suggests that the mTOR signaling pathway influences longevity and aging. Inhibition of mTOR

signaling with rapamycin (or its derivative rapalogs) is currently the only reliable pharmacological treatment option known

to increase longevity in mice, as well as in yeast, worms, and flies, and to prevent age-related conditions in rodents, dogs,

nonhuman primates, and humans . mTOR complexes are serine/threonine kinases that lie downstream of Akt in the

PI3 kinase pathway and regulate not only protein synthesis but also protein degradation through autophagy . Under

normal conditions, the free amino acids, the products of proteolysis, stimulate mTOR and facilitate protein synthesis

through the downstream effectors, such as ribosomal protein S6 kinase 1 (S6K1) and eukaryotic translation initiation

factor 4E binding protein 1 (4EBP1). As rapamycin, rapalogs, and rapamycin metabolites, both endogenous and dietary

DHA can target mTOR, altering of downstream effector activation and subsequent protein synthesis . However, this

also upregulates cellular autophagy (contributing to the anti-inflammaging effects) and subsequently inhibits the UPS,

which is more critical for muscle protein degradation. Therefore, the processes involving mTOR probably create a

complex crosstalk between the pathways involved in protein synthesis and degradation, although the detailed

mechanisms remain to be identified. Dual inhibitory effects of DHA on mTOR signaling and protein catabolism could be a

potentially promising strategy to slow aging and extend a healthy lifespan.

Currently, there is no pharmacological intervention method with a clear underlying molecular mechanism to prevent or

treat sarcopenia. Considering the increasing recognition of individual and socioeconomic problems associated with

sarcopenia, the potential of DHA as an anti-sarcopenic agent should be evaluated more thoroughly through global

analysis of cellular oxidative stress and subsequent cellular proteome changes. Relatively newly instituted global
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standards for the screening and diagnosis of sarcopenia (International Classification of Disease, ICD-10-CM

code.M62.84) can be applicable in both prospective and retrospective clinical trials . A small anti-sarcopenic property of

DHA would have a big impact on health and quality of life for the older population.
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