

Cistus sp.

Subjects: **Plant Sciences**

Contributor: Mohammed Bourhia

Cistus is a Mediterranean native genus of shrubs belonging to the family Cistaceae. Species of this genus can grow during hot summers and after wildfires. Cistus species are most widespread in the Mediterranean region, whilst some of them are endemic. Cistus plants can grow under slightly different environmental conditions. Most species are very fragrant and sweet-smelling.

sp.

phytochemicals

microorganisms

antimicrobials

multidrug resistance

1. Introduction

Nature is the source of natural remedies widely used by 80% of the world population [1]. In North America, Europe, and other developed regions, over 50% of the population has used traditional medicine at least once [2].

The World Health Organization (WHO) has a keen interest in documenting medicinal plants used by indigenous people from different parts of the world [3][4]. The use of plant derivatives as medicinal treatments gained popularity in the late 1990s [5].

The screening of phytochemical composition in medicinal and aromatic plants plays a significant role in many areas, such as the human diet, animal feed, pharmaceuticals, fragrances, and cosmetics, etc. [6][7][8][9].

The Mediterranean basin, one of the hot spot biodiversity in the world [10][11], is rich in vegetation, including medicinal plants [12][13][14]. One example is Cistus L. sp., which was intensively studied in terms of medicinal properties along with its chemical composition. In this sense, this work was conducted to gather data on Cistus L. regarding antimicrobial potential and chemical profiles.

2. Biological Potential of Cistus Species

Considering the importance of developing pharmaceutical products with lesser side effects for inflammation and pain treatments. The current study proposed by [15] reports the anti-inflammatory and analgesic potent of Moroccan *C. salviifolius* aqueous extracts, an important reduction of inducing paw edema (97.57%), and significant inhibition of writhes for a dose of 500 mg/Kg of body weight. In a recent paper published by I. Chiocchio, the authors demonstrated for the first time the skin protection effect of *C. salviifolius* hydro-methanolic extracts [16]. Trials aimed to test the in vitro inhibition of two enzymes which are cosmetic targets (tyrosinase and elastase), showed the

inhibition of 51% against elastase and 61% against tyrosinase at a concentration of 50 $\mu\text{g}/\text{mL}$. Also, a correlation was established between inhibition enzymatic potency and the total phenolic and flavonoids content.

Ethnopharmacological data revealed the use of *C. albidus* flowering top in decoction against respiratory disorders by the North-West of Morocco population [17]. In this regard, a study was carried to support the traditional pharmacopeia in Morocco. A high value of total phenolic content and total flavonoid content was registered from ethanolic extract (TPC $112.48 \pm 1.78 \text{ mg GAE/g extract}$; TFC $24.55 \pm 0.58 \text{ mg QE/g extract}$). Those compounds are secondary metabolites that could act as antibacterial responsible for respiratory infections [18].

In contrast, a study carried out with *C. clussi* on the role of a secondary metabolic pathway in responses to stress such as summer drought, reported the increased syntheses of many phenolic compounds and the maximum efficiency of photosystem II. The induced drought may be due to the compound's action to protect the plant from oxidative damage [19].

The *C. populifolius* aqueous extract from Spain have demonstrated for the first time a high polyphenol (especially ellagitannins) content and high antioxidant capacity observed in many analysis, data reported in this study suggests the use of this species in the food industry and biological systems [20].

3. Antiparasitic Activity of Cistus Extracts

Each year diseases caused by parasites lead to hundreds of millions of infected people, particularly in tropical and subtropical regions, resulting in one million deaths [21]. At first report about the potential of *Cistus* against parasites, Fokialakis have demonstrated the significant antileishmanial activity of raw extract of *C. monspeliensis* and *C. creticus* [22][23]. Also, the authors tested pure and semisynthetic compounds from the same species against *L. donovani* promastigote (causative agent of visceral leishmaniasis). Obviously, among the eight natural compounds from *C. monspeliensis*, 18-acetoxy-cis-clerod-3-en-15-ol was the most active with an IC 50 value of 3.3 $\mu\text{g}/\text{mL}$, while *C. creticus* compounds were less sensitive ent-3b-acetoxy-13-epi-manoyl oxide active with an IC 50 value of 17 $\mu\text{g}/\text{mL}$. As far as we could observe, semisynthetic derivatives showed variable responses, ranging from inactivated to more active than the parent compound. As it is commonly acknowledged that the fundamental concepts of activity are about selective toxicity against the target without any toxicity to the host cell, none of all compounds tested in this study was cytotoxic to mammalian cells up to the highest concentration of 47.6 $\mu\text{g}/\text{mL}$.

A recent report by Bouyahya on macerated extracts from *C. crispus* leaves against three *Leishmania* species tests at the promastigote stage have demonstrated that among the solvent used, methanol and ethanol, n-hexane showed the best anti-promastigote activity regarding *L. major*, *L. tropica*, and *L. infantum*. Moreover, *L. Infantum* was the most sensitive IC 50 47.29 $\mu\text{g}/\text{mL}$. Also, it should not be forgotten that all results obtained with *C. crispus* extracts were lower than the control used (Glucantime ®® IC 50 > 500 $\mu\text{g}/\text{mL}$) [24]. However, no toxicity tests were performed. Unfortunately, there is a high probability that the products that have been classified as active against a particular parasite in vitro are likely to be known toxins to host cells (Table 1).

Table 1. Antiparasitic potent of *Cistus* extracts.

<i>Cistus</i> Species	Collection Area	Part of Plant	Type of Extract	Parasite	Technique	Concentration $\mu\text{g/mL}$	$\text{IC}_{50} \mu\text{g/mL}$	Mechanism	References
<i>C. monspeliensis</i> <i>C. creticus</i>	Greece	Aerial parts Resin	Pure compounds from Dichloromethane extracts and semisynthetic derivatives	<i>L. donovani</i>	In vitro culture of promastigote and Alamar blue assay	1.6–8–40	From 3.5 to 37	ND	[23]
<i>C. crispus</i>	Quezzane, Morocco	Leaves	Methanolic, Ethanolic and <i>n</i> -hexane extracts	<i>L. major</i> <i>L. tropica</i> <i>L. infantum</i>	MTT assay	ND	<i>n</i> -hexane against <i>L. major</i> = 47.29	ND	[24]

ND: Not determined; *L*: *Leishmania*.

The in vivo screen should assess activity against an intracellular stage of parasite development to be genuinely representative for an antiparasitic product suitable for development. Nevertheless, no screening system is perfect because of the lack of correlation between tests in vitro and in vivo in all areas of drug discovery. We cannot emulate the complex situation in vivo.

4. Antifungal Activity of *Cistus* Extracts

In search for antifungal drugs in the *Cistus* genus, rockrose is also known as *C. creticus* = *C. villosus* = *C. incanus*, was widely investigated. First, by Demetzos et al., in both reports about EO's composition and its effect against *C. albicans* which had almost the same effect [25][26]. Comparative MIC analyses of Moroccan and Turkish rockrose against *C. glabrata* and *C. albicans* show respectively significant MIC values with methanol extract from Moroccan species 0.19–6.25 mg/mL and 8–32 mg/mL with aqueous extract from Turkish samples. Interestingly the bio-guided extraction (fractionation with increasing polarity solvent) of Bouamama allowed a better activity localization. Butanol fraction and remaining aqueous layer were more active than the raw extract. It also should be noticed that *C. glabrata* was the most sensitive while *C. krusei* was the most resistant to extracts [27][28]. However, the highest anti-candida activity was reported with phenolic extract of *C. ladaniferus*. MIC was lower 0.05 mg/mL for *C. albicans*, *C. glabrata*, and *C. parapsilosis* [29]. This extract was mainly made of phenolic compounds, which might explain its activity.

Karim did similar investigations to demonstrate the effectiveness of eight *Cistus* varying types of extracts. Obviously, for anti- *G. citri-aurantii*, water was the best extraction solvent, followed by methanol and chloroform. In both studies at a concentration of 5 mg/mL aqueous and methanolic, extracts of *C. creticus*, *C. albidus*, *C.*

laurifolius , *C. monspeliensis* , *C. crispus* , *C. salviifolius* , and *C. populifolius* exhibited a total inhibition of arthospore germination. However, among all extracts, aqueous ones of *C. salviifolius* and *C. monspeliensis* have strongly inhibited the fungi with MIC values low than 0.625 mg/mL.

To the best of our knowledge, little is shown about post-harvest citrus fungal pathogens. These studies have pointed out that Cistus extracts will widen the list of allelopathic plants to *G. citri-aurantii* growth.

A recent Moroccan report about the ethanolic extract from rockrose against *P. expansum* and *P. digitatum* : the research was done using agar dilution, and the results revealed the sensitivity of *P. digitatum* MIC 1 mg/mL while *P. expansum* was more resistant with MIC of more than 10 mg/mL. Also, the same study has evaluated the effect against unusual fungi such as *C. versicolor* , *G. trabeum* , *P. placenta* , and *C. puteana* , which is known to be wood decomposition. Most of them presenting a resistance against ethanolic extract. However, they were more sensitive against EO [30].

References

1. Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. *Front. Pharmacol.* 2014, 4, 177.
2. Adeniyi, A.; Asase, A.; Ekpe, P.K.; Asitoakor, B.K.; Adu-Gyamfi, A.; Avekor, P.Y. Ethnobotanical study of medicinal plants from Ghana; Confirmation of ethnobotanical uses, and review of biological and toxicological studies on medicinal plants used in Apra Hills Sacred Grove. *J. Herb. Med.* 2018, 14, 76–87.
3. Buragohain, J. Ethnomedicinal Plants Used by the ethnic Communities of Tinsukia District of Assam, India. *Rec. Res. Sci. Technol.* 2011, 3, 12.
4. Mikawlawng, K.; Rani, R.; Kumar, S.; Bhardwaj, A.R.; Prakash, G. Anti-paralytic medicinal plants —Review. *J. Tradit. Complement. Med.* 2018, 8, 4–10.
5. Cowan, M.M. Plant Products as Antimicrobial Agents. *Clin. Microbiol. Rev.* 1999, 12, 564–582.
6. Traka, M.H.; Mithen, R.F. Plant Science and Human Nutrition: Challenges in Assessing Health-Promoting Properties of Phytochemicals. *Plant Cell* 2011, 23, 2483–2497.
7. Valenzuela-Grijalva, N.V.; Pinelli-Saavedra, A.; Muhlia-Almazan, A.; Domínguez-Díaz, D.; González-Ríos, H. Dietary inclusion effects of phytochemicals as growth promoters in animal production. *J. Anim. Sci. Technol.* 2017, 59, 1–17.
8. Vijayakumar, S.; Prabhu, S.; Rajalakhsmi, S.; Manogar, P. Review on potential phytocompounds in drug development for Parkinson disease: A pharmacoinformatic approach. *Inform. Med. Unlocked* 2016, 5, 15–25.

9. Parvez, S.; Kang, M.; Chung, H.-S.; Bae, H. Naturally occurring tyrosinase inhibitors: Mechanism and applications in skin health, cosmetics and agriculture industries. *Phytother. Res.* 2007, 21, 805–816.
10. Perrino, E.V.; Tomaselli, V.; Costa, R.; Pavone, P. Conservation status of habitats (Directive 92/43 EEC) of coastal and low hill belts in a Mediterranean biodiversity hot spot (Gargano—Italy). *Plant Biosyst. Int. J. Deal. Asp. Plant Biol.* 2013, 147, 1006–1028.
11. Wagensommer, R.P.; Medagli, P.; Turco, A.; Perrino, E.V. IUCN Red List evaluation of the Orchidaceae endemic to Apulia (Italy) and considerations on the application of the IUCN protocol to rare species. *Nat. Conserv. Res.* 2020, 5.
12. Perrino, E.; Valerio, F.; Gannouchi, A.; Trani, A.; Mezzapesa, G. Ecological and Plant Community Implication on Essential Oils Composition in Useful Wild Officinal Species: A Pilot Case Study in Apulia (Italy). *Plants* 2021, 10, 574.
13. Maruca, G.; Spampinato, G.; Turiano, D.; Laghetti, G.; Musarella, C.M. Ethnobotanical notes about medicinal and useful plants of the Reventino Massif tradition (Calabria region, Southern Italy). *Genet. Resour. Crop. Evol.* 2019, 66, 1027–1040.
14. Singh, B.; Singh, B.; Kishor, A.; Singh, S.; Bhat, M.; Surmal, O.; Musarella, C. Exploring Plant-Based Ethnomedicine and Quantitative Ethnopharmacology: Medicinal Plants Utilized by the Population of Jasrota Hill in Western Himalaya. *Sustainability* 2020, 12, 7526.
15. Sayah, K.; Chemlal, L.; Marmouzi, I.; El Jemli, M.; Cherrah, Y.; Faouzi, M.E.A. In vivo anti-inflammatory and analgesic activities of *Cistus salvifolius* (L.) and *Cistus monspeliensis* (L.) aqueous extracts. *S. Afr. J. Bot.* 2017, 113, 160–163.
16. Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. *Ind. Crop. Prod.* 2018, 122, 498–505.
17. Bouyahya, A.; Abrini, J.; Et-Touys, A.; Bakri, Y.; Dakka, N. Indigenous knowledge of the use of medicinal plants in the North-West of Morocco and their biological activities. *Eur. J. Integr. Med.* 2017, 13, 9–25.
18. Bouyahya, A.; Abrini, J.; El-Baabou, A.; Dakka, Y.B.A.N. Determination of Phenol Content and Antibacterial Activity of Five Medicinal Plants Ethanolic Extracts from North-West of Morocco. *J. Plant Pathol. Microbiol.* 2016, 7.
19. Hernández, I.; Alegre, L.; Munné-Bosch, S. Drought-induced changes in flavonoids and other low molecular weight antioxidants in *Cistus clusii* grown under Mediterranean field conditions. *Tree Physiol.* 2004, 24, 1303–1311.
20. Barrajón-Catalán, E.; Fernández-Arroyo, S.; Saura, D.; Guillén, E.; Fernández-Gutiérrez, A.; Carretero, A.S.; Micol, V. Cistaceae aqueous extracts containing ellagitannins show antioxidant

and antimicrobial capacity, and cytotoxic activity against human cancer cells. *Food Chem. Toxicol.* 2010, 48, 2273–2282.

21. Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. *Lancet* 2012, 380, 2095–2128.

22. Fokialakis, N.; Kalpoutzakis, E.; Tekwani, B.L.; Khan, S.I.; Kobaisy, M.; Skaltsounis, A.L.; Duke, S.O. Evaluation of the antimalarial and antileishmanial activity of plants from the Greek island of Crete. *J. Nat. Med.* 2006, 61, 38–45.

23. Fokialakis, N.; Kalpoutzakis, E.; Tekwani, B.L.; Skaltsounis, A.L.; Duke, S.O. Antileishmanial Activity of Natural Diterpenes from *Cistus* sp. and Semisynthetic Derivatives Thereof. *Biol. Pharm. Bull.* 2006, 29, 1775–1778.

24. Bouyahya, A.; Et-Touys, A.; Dakka, N.; Fellah, H.; Abrini, J.; Bakri, Y. Antileishmanial potential of medicinal plant extracts from the North-West of Morocco. *Beni-Suef Univ. J. Basic Appl. Sci.* 2018, 7, 50–54.

25. Demetzos, C.; Loukis, A.; Spiliotis, V.; Zoakis, N.; Stratigakis, N.; Katerinopoulos, H.E. Composition and Antimicrobial Activity of the Essential oil of *Cistus criticus* L. *J. Essent. Oil Res.* 1995, 7, 407–410.

26. Demetzos, C.; Katerinopoulos, H.; Kouvarakis, A.; Stratigakis, N.; Loukis, A.; Ekonomakis, C.; Spiliotis, V.; Tsaknis, J. Composition and Antimicrobial Activity of the Essential Oil of *Cistus criticus* subsp. *eriocephalus*. *Planta Med.* 1997, 63, 477–479.

27. Viapiana, A.; Konopacka, A.; Waleron, K.; Wesolowski, M. *Cistus incanus* L. commercial products as a good source of polyphenols in human diet. *Ind. Crop. Prod.* 2017, 107, 297–304.

28. Bouamama, H.; Noel, T.; Villard, J.; Benharref, A.; Jana, M. Antimicrobial activities of the leaf extracts of two Moroccan *Cistus* L. species. *J. Ethnopharmacol.* 2006, 104, 104–107.

29. Barros, L.; Dueñas, M.; Alves, C.T.; Silva, S.; Henriques, M.; Santos-Buelga, C.; Ferreira, I.C. Antifungal activity and detailed chemical characterization of *Cistus ladanifer* phenolic extracts. *Ind. Crop. Prod.* 2013, 41, 41–45.

30. Lahcen, S.A.; El Hattabi, L.; Benkaddour, R.; Chahboun, N.; Ghanmi, M.; Satrani, B.; Tabyaoui, M.; Zarrouk, A. Chemical composition, antioxidant, antimicrobial and antifungal activity of Moroccan *Cistus creticus* leaves. *Chem. Data Collect.* 2020, 26, 100346.

Retrieved from <https://encyclopedia.pub/entry/history/show/30001>