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Despite significant advances, targeted therapy is greatly limited by resistance acquisition, which emerges in nearly
all patients receiving treatment. As a result, identifying the molecular modulators of resistance is of great interest.
Recent work has implicated protein kinase C (PKC) isozymes as mediators of drug resistance in non-small cell
lung cancer (NSCLC). Importantly, previous findings on PKC have implicated this family of enzymes in both tumor-
promotive and tumor-suppressive biology in various tissues. Here, we review the biological role of PKC isozymes
in NSCLC through extensive analysis of cell-line-based studies to better understand the rationale for PKC
inhibition.

non-small cell lung cancer (NSCLC) targeted therapy chemotherapy protein kinase C (PKC)
drug resistance epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI)
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| 1. Introduction

Lung cancer is the most prevalent cancer and the leading cause of cancer-related mortality worldwide, with an
estimated 2,093,900 new cases and 1,761,000 deaths annually 2, pue to the initial asymptomatic course of lung
cancer, most patients present with locally advanced or metastatic disease at the time of diagnosis. Metastatic lung
cancer has significantly limited therapeutic options and is associated with highly unfavorable prognosis. The
current clinical outcomes for lung cancer patients are far from satisfactory, and novel treatments must be
developed that improve overall survival (OS) . Lung cancer is histologically classified into small cell lung cancer
and non-small cell lung cancer (NSCLC). NSCLC accounts for the largest subset of lung cancer cases, roughly

85%, and is further categorized into adenocarcinoma, squamous cell carcinoma, and large-cell carcinoma 4121,

Mutational profiling of lung adenocarcinoma patients reveals Kirsten rat sarcoma viral oncogene (KRAS),
epidermal growth factor receptor (EGFR), and anaplastic lymphoma kinase (ALK) as the most prominent
oncogenic drivers. Other, less common mutations have been reported and include BRAF, PIK3CA, MET, HER?2,
MEK1, and NRAS (Figure 1) €. Driver mutations define tumor biology and present vulnerabilities that could be
exposed via specific inhibition to suppress tumor growth. Driver-directed therapeutics have heralded impressive
clinical outcomes, drastically changing the treatment course and the progression-free survival (PFS) of patients
who would otherwise be given standard chemotherapy with an estimated median survival of under 12 months @,
Critically, patients with appropriate biomarkers initially show remarkable responses to targeted therapy. However,

nearly all patients relapse with tumors that are no longer sensitive to original treatment, and such an acquired
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resistance greatly hinders the clinical outcomes of lung cancer patients. Therefore, understanding the mechanisms
that drive the emergence of resistance is of interest, and therapeutic approaches that overcome resistance are

essential [,

Figure 1. An overview of lung cancer histology and driver mutations in adenocarcinoma patients.

In addition to the commonly identified driver mutations, other upregulated mediators have been observed in
NSCLC. Interestingly, elevated protein kinase C (PKC) isoforms a, €, n, and | have been observed in NSCLC and

associated with poor prognosis, hinting at a potential role in mediating tumorigenesis 2.

| 2. The Protein Kinase C Family

The family of PKC has been extensively reviewed over the years LUILLL2IISI4JISIIGILT  Briefly, PKCs were
initially discovered in 1977 by the group of Yasutomi Nishizuka 18], Later characterization of this novel kinase led to
the discovery of three classes: classical (a, B1, B2, y), novel (3, €, n, 8), and atypical (Z, 1) PKCs [191[20[21]22][23][24]
(23] Bjochemical analysis of PKCs revealed a highly conserved C-terminal catalytic domain, with a variable N-
terminal regulatory domain (Eigure 2) 281, Identification of PKC as a direct effector of diacylglycerol (DAG) defined
the primary second messenger function of DAG and connected PKC to the phosphatidylinositol (PI) cycle of
signaling [ZZ. Cytosolic concentrations of second messenger activators of PKC, DAG and calcium, are mediated by
phospholipase C, which cleaves phosphatidylinositol 4,5-bisphosphate (PIP,) to generates DAG and inositol
trisphosphate (IP3). IP3 further regulates cytosolic calcium levels. The discovery of PKC activation by tumor-
promoting agent phorbol 12-myristate 13-acetate (PMA) in 1982 28 drew attention to this family of kinases based
on the plethora of cell biologic responses to PMA and other phorbol esters, warranting extensive research that
implicated PKC isozymes in various pathologies, including cancer, heart disease, diabetes, and several
neurological diseases LAILLIZ|1SI14]I5]16] |t should be noted that the atypical PKCs, PKCI and PKCZ, are not

targets for either DAG or phorbol esters.
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Figure 2. A schematic representation of PKC subfamily structural domains. Distinct PKC isozymes are categorized
into classical, novel, or atypical PKCs based on N-terminal regulatory domain structure and have conserved C1-4
domains. Classical PKC a, B1, B2, y are activated by DAG and calcium through binding with C1A-C1B and C2
domain, respectively. Novel PKC isoforms 9, €, n, 6 are DAG dependent but calcium independent for their
activation, as the C2-like domain cannot bind calcium. Atypical PKC ¢, 1 do not respond to calcium or DAG. All PKC
isozymes have a pseudosubstrate (PS) domain involved in kinase auto-inhibition. The C-terminal catalytic domain
is highly homologous between all the PKC isozymes and consists of an ATP binding C3 domain and a C4 kinase

domain.

In the context of cancer, PKCs are known to regulate several cellular processes, including proliferation, cell cycle
progression, angiogenesis, metastasis, apoptosis, and drug resistance (Figure 3) 18 Contrary to findings
implicating PKCs as promoters of cancer progression, a separate body of work has established PKCs as tumor
suppressors in various tissues by inducing differentiation and inhibiting anchorage-independent growth, migration,
and metastasis. 172339 Contradictory results on the biological role of PKCs have led to the conclusion that PKC-

mediated biology is highly tissue- and isozyme-specific 211,
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Figure 3. A scheme defining the biological roles of PKC in NSCLC.

3. Expression, Biological Role, and Prognosis of Protein
Kinase C in NSCLC

Bioinformatic analysis using gene expression databases and immunohistochemistry (IHC) analysis of patient

tissues have revealed the upregulation of several PKC isoforms in NSCLC compared to normal lung epithelium.

PKCa is highly expressed in NSCLC. Expression is higher in adenocarcinoma than squamous cell carcinoma (221,
NSCLC cell lines H1355, H157, H1155, H1703, and A549 showed elevated PKCa levels compared to normal
human bronchial epithelial cells 23l Elevated PKCa activity has been observed in A549, PC-9, PC-14, and RERF-
LC-MS NSCLC cell lines B4, Notably, a recent study reported significantly worse OS in lung adenocarcinoma
patients expressing relatively high PKCa protein levels B3, In agreement with this finding, a vast body of work on
PKCa has implicated the kinase as a promoter of tumorigenesis in KRAS or EGFR mutant NSCLC. Antisense
oligonucleotide-mediated suppression of PKCa demonstrated antitumor activity in LTEPa-2 and A549 by reducing
proliferation and invasive phenotype in tissue culture [B8IE7 Furthermore, antisense downregulation of PKCa

inhibited tumor growth of A549-inoculated xenografts in vivo 8. In addition to positively regulating cell proliferation
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and migration, PKCa is more specifically implicated in cell cycle progression and apoptosis in NSCLC. Antisense
downregulation of PKCa and 6 in H23 cells resulted in an increased expression of p21, leading to G1 arrest in a
p53-independent manner B2, PKCa has also been implicated in drug sensitivity and resistance acquisition and was
reported to mediate doxorubicin sensitivity by phosphorylation of RLIP76 in NSCLC 2241l |nterestingly, a separate
study has linked PKCa to multi-drug resistance gene MDR1, suggesting a potential mechanism by which PKC
mediates drug sensitivity 2. The PKC inhibitor, chelerythrine chloride, decreased PKCa mRNA expression and
protein levels and sensitized cisplatin-resistant A549 to cisplatin #3. However, PKC and drug sensitivity findings
are not limited to PKCa, but are also reported for other isoforms 44, Upregulation, increased activity, and tumor-
promoting properties of PKCa deem the kinase as a potential marker and therapeutic target in NSCLC patients.
Notably, the detection of activated PKCa in serum has been reported to be a potential prognostic marker for lung

cancer [43],

PKCd has been suggested as a therapeutic target for NSCLC. In NSCLC cells with mutant KRAS, targeting PKCd
has been shown to inhibit invasion, migration, and colony formation 8. Moreover, inhibiting PKC3 in NSCLC cells
promotes drug-induced apoptosis B3l In H1299, HSP27 and PKC3 heptapeptide interaction has been linked to
drug and radiation resistance 47,

PKCe overexpression has been detected in >90% of NSCLC patient samples via IHC 28l Low expression of PKCe
in healthy tissue has made the isozyme a potential cancer marker #9. Functionally, PKCe has been linked to
enhanced proliferation, cell cycle progression, migration, and evasion of apoptosis in NSCLC. Ectopic expression
of dominant-negative kinase-deficient PKCe demonstrated significantly reduced proliferation and impaired
anchorage-independent growth in H358, H460, H23, and H157 when compared to vector controls. This was
accompanied by G1 arrest as a consequence of enhanced p21 inactivation of cdk2 48 Molecular and
pharmacological inhibition of PKCe impaired invasiveness of A549 cells in vitro. Knockdown of PKCe by an isoform-
specific siRNA downregulated expression and secretion of several metalloproteases, suggesting a possible
mechanism for reduced migration. In vivo metastasis models using a stable shRNA-mediated depletion of PKCeg in
A549 have confirmed in vitro findings. Separately, pharmacological inhibition of PKCe using isoform-specific
peptide inhibitor eV1-2 was reported to reduce H358 tumor growth in athymic nude mice Y. PKCe downregulation
impaired the metastatic potential of intravenously inoculated A549 cells B, Furthermore, PKCe downregulation
has been linked to apoptosis; PKCe- depleted cells expressed elevated levels of several pro-apoptotic genes, such
as Bak, and showed a decrease in anti-apoptotic Bcl-2 mRNA expression. Interestingly, a separate study on miR-
143, shown to specifically regulate PKCe, also confirmed the tumor-promoting role of PKCe and its implication in
apoptosis. miR-143 has been reported to be downregulated in lung cancer, and its suppression enhanced the
proliferation and allowed the evasion of apoptosis in A549 and Calu-1 cells 22, These findings elucidate the

potential therapeutic advantage of PKCe inhibition in a subset of lung cancer patients overexpressing the kinase.

Although little is known about the biological role of PKCn in NSCLC, PKCn protein levels correlated positively with
disease stage, and its overexpression has been linked to poor prognosis in lung cancer 3. A previous study
reported an increased risk of death within the first year of diagnosis in NSCLC patients with relatively higher levels

of PKCn B4, Moreover, antisense downregulation of PKCn augmented the antitumor effects of vincristine and
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paclitaxel in A549 cells 44, These findings warrant further investigation into the biological consequence of PKCn

regulation in NSCLC to expose potential vulnerabilities 52,

PKCI is similarly overexpressed in NSCLC tissues compared to normal lung epithelium BEIEZIBSIEABA  Western
blot analysis of NSCLC cell lines A549, H520, H1299, H292, ChaGo, and Sk-Mesl showed high PKCi protein
levels 5961 Overexpression of PKCi correlated with poor OS of lung adenocarcinoma patients 2. Moreover,
there is a positive relationship between PKCi expression and glucose metabolism. Patients with a higher
expression of PKC1 and glucose transporter GLUT1 showed a poorer prognosis 3. Elevated expression of PKCI
mRNA and protein levels in NSCLC have been attributed to PRKCI gene amplification B4, Importantly, PKCi has
been implicated in NSCLC growth, migration, and anti-apoptotic signaling. Stable expression of kinase-deficient
PKCI impaired anchorage-independent growth of A549, H1299, and ChaGo cells BBl |n agreement with this
finding, a study identifying targets of PKCi revealed that the downregulation of four downstream effector genes,
COPB2, ELF3, RFC4, and PLS1, suppressed the transformed phenotype of A549 64, PKCI-dependent activation
of Racl resulted in subsequent activation of the PAK/MEK/ERK pathway. Constitutively active Racl restored
anchorage-independent growth of A549 stably expressing kinase-inactive PKC1 B2, A subsequent study noted Ect2
as another effector, regulated by PKCi. Importantly, the PKCi-regulated phosphorylation of Ect2 was a critical event
for the promotion of anchorage-independent growth of H1703 cells 3. Notably, a study looking at lung
adenocarcinoma tissue reported increased PKC1 expression in invasive lesions 2. Pharmacological inhibition of
PKCi using atypical PKC inhibitor DNDA increased the apoptosis of H1299 and A549 cells, accompanied by a
decrease in pro-survival Bcl-2 and an increase in cleaved caspase-3 B2, Additionally, PKCi regulates Bcl-x splicing,
promoting survival through anti-apoptotic Bcl-x(L) expression [8l. In a recent study, PKCi was shown to
phosphorylate ELF3 transcription factor, driving the expression of NOTCH3, which, in turn, induced stemness and
promoted lung tumor formation in KRAS-mutant NSCLC &7, These findings provide compelling evidence linking
PKCI to invasion and metastasis in NSCLC. Therefore, the inhibition of PKCi may be a rational approach to
suppressing NSCLC, particularly in specific contexts such as mutant KRAS-expressing lung adenocarcinoma 68,
Inhibition of the PKCI-PAK1 pathway significantly reduced cell viability and colony formation of HCC827, H23, and
H520 cells, showing efficacy not only in mutant KRAS cells, but also mutant EGFR (AEGFR) cell lines 2,
Importantly however, lung adenocarcinoma may develop through both PKCi-dependent and PKCi-independent

pathways 9. Therefore, it is critical to limit PKCI-targeted approaches to PKCi-dependent tumors.

More recently, PKCZ upregulation has also been observed in NSCLC. PKCi and PKCC are both reported to be
downstream effectors of YAP, which regulates the phosphorylation of both atypical PKCs, promoting lung
adenocarcinoma tumorigenesis 9. The specific inhibition of PKCZ was previously shown to regulate NSCLC
chemotaxis /4. Since evidence associates both 1 and  isoforms with pro-invasive biology in NSCLC, atypical PKC
inhibition may be a promising therapeutic approach to impair proregression of lung cancer in patients with elevated
or activated PKCi and PKCC.

Very little is known about the biological roles of PKC[1, 32, y, 6 in NSCLC. PKC[( promotes angiogenesis in
glioblastoma, breast, ovarian, and prostate cancer 2781741 Additionally, PKCPB2 is highly expressed in chronic

lymphocytic leukemia and chronic myelogenous leukemia, where the kinase suppresses anti-apoptotic signals [
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[6I[77][78] pKCy expression is mainly limited to neuronal tissues 2. Furthermore, novel PKC isoform 8 is primarily
expressed in hematopoietic cells BYEl The expression and known biological roles of PKCs in NSCLC are
summarized in Table 1.

Table 1. Proposed biological roles of distinct PKC isozymes in NSCLC.

Isozyme Biological Roles References

Promotes proliferation, invasion, migration, cell cycle progression, evasion of [36][37][38][39][40][41]

PKC a
apoptosis, drug resistance r2|82](83)

PKC
P Unknown
B2
PKCy Not expressed
PKC & Mediates drug sensitivity, invasion, cell survival [33][46][47][82][84]

e Promotes proliferation, invasion, migration, cell cycle progression, [48][50][51][52]

anchorage-independent growth, evasion of apoptosis

PKCn Mediates drug sensitivity [44]

PKC 6 Not expressed

PKC Z Chemotaxis (]
Promotes proliferation, invasion, migration, anchorage-independent growth, [57][e1][62][63][64][65]

evasion of apoptosis, stemness, glucose metabolism

| 4. Therapeutic Approaches Targeting PKCs in NSCLC

PKCs have been targeted alone or in combination with other agents in clinical trials through the use of potent

activators, antisense oligonucleotides, and specific/ non-specific kinase inhibitors.
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The most common clinical and pre-clinical approach in regulating PKC activity is by small-molecule inhibition. ATP-
competitive PKC inhibitors are mostly non-specific and show off-target effects on alternate PKC isoforms and other
closely related serine/threonine kinases. Lack of isozyme-specific inhibitors is a critical limitation associated with
this approach. Enzastaurin, a PKCp inhibitor with in vitro IC50 for PKCa: 39 nM, PKCp: 6 nM, PKCy: 83 nM, PKCe:
110 nM, is one of the best-studied inhibitors in NSCLC B3, Enzastaurin treatment of NSCLC cells H520, Calul,
Calu3, and Calu6 impaired colony-forming capability at clinically attainable concentrations [B&. Two separate phase
| clinical trials reported favorable toxicity profiles for enzastaurin BZ88 Enzastaurin as second- or third-line
treatment of NSCLC patients resulted in disease stabilization of a small subset of patients (13%) enrolled in the
clinical trial 82, As enzastaurin was well-tolerated in previous studies, further combination of the inhibitor with
cytotoxic agents was recommended. Enzastaurin and pemetrexed synergistically inhibited cell cycle progression,
enhanced apoptosis, and modulated signaling by reducing AKT phosphorylation and VEGF expression in A549 and
SW1573 cells 29, Enzastaurin, in combination with pemetrexed, was well tolerated in a phase | clinical trials and
demonstrated therapeutic efficacy as second-line treatment for patients with advanced NSCLC 21, Although well-
tolerated, enzastaurin and cisplatin-pemetrexed combination as a first-line treatment did not improve PFS or OS of
NSCLC patients according to two independent phase Il clinical trials 22231 |n another clinical study assessing PKC
inhibitor efficacy in combination with chemotherapy, enzastaurin did not add to the antitumor effects of pemetrexed-
carboplatin 24, A subsequent meta-analysis evaluating additive effects of PKC inhibitors in combination with
chemotherapy reported no significant improvement in PFS and OS across all studies and noted additional toxic
effects with PKC inhibition 23, Despite showing pre-clinical success, PKC inhibitors have failed to provide
significant benefits in clinical trials. This inefficacy may be explained by the lack of patient stratification based on
PKC expression in the clinical trials described above. Most in vitro and in vivo models were conducted on cells with
elevated PKC. However, no effort was made to test patients enrolled in clinical trials for PKC levels or predictive
biomarkers of PKC activity. Although many factors could explain the discrepancy between pre-clinical and clinical
studies, patient treatment without molecular testing is not an optimal approach to assess PKC inhibitor efficacy. It
may also be possible that the cytostatic effects of enzastaurin limit the therapeutic potential of chemotherapeutic

agents, thus demonstrating little efficacy, as seen in the combination treatment trials described above.

Tumor-promoting phorbol ester 12-O-tetradecanoyl- phorbol-13-acetate (TPA), bryostatin-1, and bryostatin-2 are
potent activators of PKCs. These activators mimic DAG by binding to the C1 domain of classical and novel PKCs
(28] Unlike DAG, however, these activators are not readily metabolized and result in prolonged activation of the
isozymes 281 Bryostatin-mediated activation of PKCs (and less so with TPA) results in the acute degradation of
some PKCs following ubiquitination, leading to growth arrest [27l28] Several studies reported that the treatment of
A549 cells with PKC activators results in growth arrest, accompanied by reduced PKC levels and activity [221100]
(101)[102]103] * TPA was shown to induce G1 arrest in H358 [1%4 and increased senescence-associated-p-
galactosidase marker 1931 Importantly, neither PKC protein nor activity was measured in these studies; therefore, it
is not clear if these findings are due to PKC activation or its downregulation following prolonged activation via TPA
as previously reported. PKC activators have demonstrated impressive growth suppression of NSCLC cell lines in
vitro and have prolonged OS in vivo 2%l Unfortunately, however, bryostatin-1, administered in combination with

paclitaxel, showed no significant benefit in patients with NSCLC and showed unfavorable toxicity profiles 197,
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Pre-clinical models using antisense oligonucleotide-mediated suppression of PKCa demonstrated significantly
impaired NSCLC tumor growth [B8IB7IB8] | addition, the antisense inhibition of PKCa in subcutaneously injected
H460 cells enhanced the antitumor effects of cisplatin [1%8, Separately, knockdown of PKCa sensitized cells to
several anticancer drugs, including carboplatin and doxorubicin 2942 These findings provided a rationale for
antisense-directed therapy against PKCa in clinical trials. Initially, a phase I/l study using a PKCa antisense
inhibitor LY900003 exhibited antitumor activity when administered in combination with cisplatin and gemcitabine
(2091 On the other hand, phase Il and phase I clinical trials using a PKCa-specific antisense inhibitor aprinocarsen,
in combination with chemotherapy, did not show significant survival benefits and exhibited additional toxic effects
(LIOLLLI12] However, it is worth mentioning that the patients enrolled in these studies were not selected or based
on any biomarkers that indicated the prevalence of PKCa overexpression or increased activity. Therefore, the
obtained results may not accurately depict therapeutic efficacy as selection of a more appropriate patient cohort is
necessary. It has become increasingly clear that, in assessment of targeted therapy, patients must be selected

based on host tumor expression of the targeted aberrant gene.

5. PKC-Mediated Resistance Acquisition and Drug Sensitivity
in NSCLC

In addition to the already described biology, PKCs appear to play a role in mediating sensitivity to cytotoxic agents
and targeted therapy based on in vitro models. More recent findings suggest that PKCs may also play a crucial role
in mediating resistance to tyrosine kinase inhibitors (TKI). One study reported that erlotinib-resistant H1650-M3
cells expressed significantly higher PKCa and had lower PKC® mRNA levels relative to the parental H1650. RNAI
and small molecule inhibition of PKCa sensitized H1650-M3 to erlotinib, a TKI inhibitor of AEGFR. Importantly,
however, a viral-mediated stable overexpression of PKCa did not affect HL650 sensitivity to erlotinib. This strongly
suggests that PKCa alone is not sufficient to induce erlotinib resistance. On the other hand, viral-mediated
overexpression of PKC3 moderately increased H1650-M3 sensitivity to erlotinib 82, A subsequent study combining
PKC inhibitor chelerythrine chloride and erlotinib in the treatment of NSCLC A549 and SK-MES1 cells reported a
significant synergy in impairing cell viability, colony formation, tumor growth in xenografts, and enhanced apoptosis.
Importantly, however, the concentrations of erlotinib used in the experiments (2.5-20 uM) typically exceeded the
therapeutic range (1-2 pM), and the cell lines used in the study have wild-type EGFR [83l. A more recent study
evaluating EGFR-TKI resistance reported PKCd to be necessary and sufficient to induce resistance, and
downregulation of the kinase via molecular and pharmacological approaches sensitized TKI-resistant cells to
erlotinib. Although contradictory to the previous study in H1650-M3, an shRNA-mediated downregulation of PKCd
sensitized H1650 and TKI-resistant HCC827-GR cells to gefitinib, another EGFR TKI. Importantly, ectopic
expression of PKCd was sufficient to induce resistance in TKl-sensitive HCC827 and H3255. Mutations in the
nuclear localization signal that sequestered PKCd in the cytoplasm impaired PKCd- induced gefitinib resistance
and attenuated phosphorylation of ERK, AKT, and RelA in isolated nuclear fractions. Clinically, PKCd upregulation
correlated negatively with OS in TKI-treated AEGFR NSCLC patients 41, Interestingly, our recently published work
has demonstrated that there is a AEGFR-independent selection for high PKCa protein expression in NSCLC, and a
AEGFR-dependent activation of PKCa that translates to constitutive downstream signaling to AKT/mTOR pathway
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(1131 |n BRAF/ KRAS mutant NSCLC, PKCa was shown to modulate sensitivity to chemotherapy via mediating
MDR1 expression and RLIP76 phosphorylation (Figure 4) 404142l These findings suggest that PKC a and &
inhibition, in the context of mutant driver genes such as EGFR and KRAS, may be a novel approach to address

TKI-sensitivity and resistance to chemotherapy in NSCLC.

Mutant EGFR

Figure 4. A scheme outlining PKC-mediated drug resistance in EGFR and KRAS mutant NSCLC.
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