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Different diseases and disorders that affect the kidneys include, but are not limited to, glomerulonephritis, diabetic

nephropathy, polycystic kidney disease, kidney stones, renal fibrosis, sepsis, and renal cell carcinoma. Kidney disease

tends to develop over many years, making it difficult to identify until much later when kidney function is severely impaired

and undergoing kidney failure. Epidemiological studies have suggested that a diet rich in fruits and vegetables is

associated with health benefits including protection against kidney disease and renal cancer. Resveratrol, a polyphenol

found in grapes and berries, has been reported to have antioxidant, anti-inflammatory, antidiabetic, hepatoprotective,

neuroprotective, and anti-cancer properties.
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1. Introduction
1.1. Kidney Function in Health and Disease

The kidneys are a pair of organs located below and posterior to the liver in the peritoneal cavity whose main function is

blood filtration and salt and water homeostasis . The kidney is divided into three regions: the outer cortex, medulla, and

inner hilum. The renal cortex contains the functional unit of the kidney known as the nephron, with approximately one

million nephrons located within each kidney (Figure 1) . Each nephron is responsible for filtration as blood enters the

kidney, which migrates through the length of the nephron where specialized regions reabsorb water and small molecules

before it is secreted as urine. The nephron can be further divided into the renal corpuscle (Bowman’s capsule) and renal

tubule . Located within the Bowman’s capsule is the glomerulus, a filtering unit of blood vessels which is responsible for

the majority of filtration within the kidney. Throughout all these structures, the kidney is connected to a highly vascularized

network of arteries, veins, and nerves, entering and exiting at the renal hilum . In addition to filtration and reabsorption,

the kidneys also produce hormones such as renin, erythropoietin, and calcitriol/vitamin D , that regulate blood pressure,

help control red blood cell production, and maintain bone metabolism and health .

Chronic kidney disease (CKD) is defined as kidney damage, or decreased kidney function present for longer than three

months. In addition, CKD requires an estimated GFR of less than 34.68 mL/min/m2 and abnormalities in biopsy/renal

imaging results . Kidney disease tends to develop over many years, making it difficult to identify until much later when

kidney function is severely impaired. Physiologically, CKD arises due to many pathological injuries that destroys some of

the nephrons, resulting in the nephrons overcompensating by hyperfiltration. Over time, glomerular hypertension,

albuminuria, and loss of renal function develop . The increase in glomerular capillary pressure leads to glomerular

capillary wall destruction, dysfunction of podocytes that cover the capillaries, and increased macromolecule permeability

. In conjunction, increased pro-inflammatory mediators are released that stimulate the proliferation of fibrotic cells. In

addition, accumulation of ECM molecules results in scar formation and renal failure . Currently, treatment strategies

exist for CKD, with all options aimed at relieving or preventing the condition from worsening, including conservative care,

medication, dialysis, or transplantation .

CKD is not the only form of kidney disorder that can severely affect an individual, with many other disorders severely

afflicting the kidney and renal system, such as polycystic kidney disease (PKD), a genetic disorder, either autosomal

dominant or recessive, characterized by cyst formation in the kidneys . Glomerulonephritis is term used to describe a

range of immune-mediated disorders resulting in inflammation of the glomerulus and other regions of the kidney . The

inflammation within the kidney disrupts blood filtration, leading to decreased urination, high blood pressure, hematuria,

and albuminuria . Diabetic nephropathy characterized by glomeruli damage and impaired blood filtration develops in

more than 50% of people with type 2 diabetes mellitus (T2DM) . In addition, renal cell carcinoma (RCC), also known as

cancer of the kidney, is the sixth and tenth most common cancer in men and women, respectively, accounting for more

than 140,000 deaths yearly and ranking as the 13th most common cause of cancer death worldwide . RCC
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originates in the lining of the proximal convoluted tubule and encompasses approximately ninety percent of all kidney

cancer cases in adults . RCC is characterized by decreased kidney filtration, anemia, and increased blood pressure,

resulting in complete kidney failure . Current treatment strategies of RCC include surgery (partial or radical

nephrectomy), chemotherapy, immunotherapy, and radiation therapy .

Figure 1. The structure of the glomerulus and nephron.

1.2. Resveratrol

Resveratrol (RSV) (3,5,4′-trihydroxy-trans-stillbene) is a polyphenol belonging to the family of stilbenes, based on shared

common structure of two phenyl moieties connected by a two-carbon methylene bridge  [42]. RSV is found in the skin of

grapes, in berries, and peanuts, with considerably high levels in grape juice (0.19–0.96 mg/L), and red wine (1.9 ± 1.7

mg/L) . RSV has been studied for its pharmacological effects, including antioxidant, anti-inflammatory,

immunomodulatory, hepatoprotective, anti-cancer, anti-atherosclerotic, and anti-diabetic properties .

The bioavailability of RSV is relatively low due to its low absorption, rapid metabolism, and elimination. A number of past

reviews have focused on resveratrol’s bioavailability  and interested readers are recommended to consult these

reviews . Initial studies in humans, showed low levels of unmetabolized RSV in the plasma upon a single oral

administration dose of 5 to 25 mg . Administration of 25 mg trans-RSV resulted in total resveratrol peak blood

concentration of 1.8–2 µM after 60 min . This was similar to another study which showed that increasing doses (500 mg

to 5000 mg) of oral administered trans-RSV resulted in plasma levels of 0.3–2.3 µM within 50–90 min .

2. Resveratrol’s Effects on Kidney Disease
2.1. In Vitro Studies: Effects of Resveratrol on Mesangial Cells

Glomerular mesangial cells occupy a central position in the renal glomerulus forming the central tuft-like structure of the

glomerular microvasculature, involved in the generation of inflammatory mediators (such as cytokines, macromolecules

and immune complexes), and are responsible for the contractile function. Mesangial cells contract or relax to modify

glomerular filtration locally in response to vasoconstrictive or vasorelaxant agents, respectively . Mesangial matrix

expansion and vaso-mediator release result in decreased glomerular surface area and hemodynamics, reducing GFR.

Mesangial cell function is affected by immunologic injury and metabolic disease, resulting in impaired filtration .

Overall, the studies show that the treatment of mesangial cells with RSV attenuated the basal, PDGF-, high glucose- and

TGF-β1-induced cell proliferation. In addition, RSV treatment reduced the high glucose- and TGF-β1-induced oxidative

stress and inflammation, reduced mitochondrial superoxide and ROS production, and increased MnSOD and

mitochondrial complex III activity. The production of the extracellular matrix protein, fibronectin, was significantly inhibited

by RSV treatment. RSV treatment significantly reduced the high glucose-induced effects by regulating NF-κB, JNK, Akt,

and p38 signaling (Table 1).

Table 1. Effects of resveratrol on kidney mesangial cells.

Cell
Resveratrol

Concentration/Duration
Effect Reference

Rat primary mesangial cells

and LLCPK1 cells
50–75 µM; 24 h ↑NF-κB activation
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Cell
Resveratrol

Concentration/Duration
Effect Reference

Rat primary mesangial cells 10 µM; 1 h ↓Gentamicin-induced contraction

Rat mesangial cells 10 µM; 1 h

↓PDGF-induced cell proliferation

↓PDGFR Y-751 phosphorylation

↓PDGFR Y-761 phosphorylation

↓PDGF-induced PI3K, Akt, ERK1/2,

c-Src activity

↑PTP1B activity

Rat primary mesangial cells 10 μM; 6 h

↓High glucose-induced

ROS production

Mitochondrial superoxide

↑ MnSOD activity

↑ Mitochondrial complex III activity

↑ ∆Ψm hyperpolarization

↑ SIRT1 activity

CRL-2573 and primary

mesangial cells
5–10 µM; 24 h

↓ High glucose-induced

Cell proliferation

Fibronectin protein

JNK and NF-κB activation

NADPH oxidase activity

ROS production

HBYZ-1 cells 20 μM; 72 h

↑High glucose-induced AdipoR1

mRNA and protein

↑FOX01 activity

↓FOX01 phosphorylation

Rat mesangial cells 25 μM; 48 h

↓High glucose-induced

Cell proliferation

PAI-1 protein

Ph-Akt

NF-κB
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Cell
Resveratrol

Concentration/Duration
Effect Reference

CRL-2573 cells 10 µM; 48 h

↓High glucose-induced

p38 MAPK activation

TGF-β1 expression

Fibronectin

SV40 MES 13 cells 10 µM; 46 h

↓TGF-β1-induced ROS production

↑TGF-β1-induced

Mitochondrial membrane potential

ATP

Complex I/III activity

NDUFB8 and ATP β protein

SIRT1

PGC-1α deacetylation

NF-κB: nuclear factor kappa light-chain-enhancer of activated B cells; PDGF: platelet-derived growth factor; PI3K:

phosphoinositide 3-kinase; Akt: protein kinase B; ERK1/2: extracellular signal-regulated kinases 1/2; c-Src: proto-

oncogene tyrosine-protein kinase Src; PTP1B: tyrosine-protein phosphatase non-receptor type 1B; MnSOD: manganese

superoxide dismutase; ROS: reactive oxygen species; SIRT1: sirtuin 1; JNK: c-Jun N-terminal kinase; NADPH:

nicotinamide adenine dinucleotide phosphate; FOX01: forkhead box 01; PAI-1: plasminogen activator inhibitor 1; MAPK:

mitogen-activated protein kinase; TGF-β1: transforming growth factor-β1; ATP: adenosine triphosphate; NDUFB8:

NADH:ubiquinone oxidoreductase subunit B8; PGC-1α: peroxisome proliferator-activated receptor gamma coactivator. ↓:

decrease; ↑: increase.

2.2. In Vitro Studies: Effects of Resveratrol on Renal Epithelial Cells

Injury in renal epithelial cells results in renal dysfunction and necrosis associated with renal failure . Overall, the studies

suggest that the treatment of renal epithelial cells with RSV attenuated the cisplatin-, high glucose-, oxalate- and TGF-β1-

induced oxidative stress, reduced mROS production, and increased antioxidant enzyme activities. In addition, RSV

treatment prevented EMT and fibronectin production. Renal epithelial cell apoptosis was reduced by RSV treatment

through increased anti-apoptotic protein levels and reduced pro-apoptotic protein expression. Furthermore, RSV

treatment increased mitochondrial membrane potential and complex III activity to attenuate the mitochondrial dysfunction

and metabolic stress (Table 2).

Table 2. Effects of resveratrol on renal epithelial cells.
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Cell
Resveratrol

Concentration/Duration
Effect Reference

Rodent glomerular epithelial cells 30 μM and 50 μM; 72 h

↓High glucose-induced

de novo protein synthesis

Acetylation of LKB1

Ph-eIF4E protein

eIF4G, eEF2, and p70S6K

protein

Mouse proximal tubular epithelial cells 100 μM; 30 min

↓Cisplatin-induced

Apoptosis

p53(S379) acetylation

PUMA-α and caspase-3

protein

Bax translocation

↑SIRT1 siRNA-acetylation

↑Bcl-xL, Bax, and Bak protein

Human renal epithelial cells 0, 40 and 80 µM; 24 h

↓Oxalate-induced

Colonization

Hyaluronan

ROS production

NADPH p22 and p47 mRNA

MCP-1 and osteopontin

mRNA

TGFβ1, TGF-RI/II

Malondialdehyde

mpkCCD  cells 25–400 µM; 30 min to 24 h

↓Sodium transport

↑GFP-AKT-PH redistribution

↑AMPKα protein

NRK-52E cells 10 and 100 μM; 24 h

↓TGF-β1-induced

Cellular proliferation

EMT

EM synthesis

Shh and Gli1 mRNA
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Cell
Resveratrol

Concentration/Duration
Effect Reference

HK-2 cells 5–20 µM; 4 h

↓High glucose-induced

EMT

ROS levels

NOX1 and NOX4 protein

ERK1/2 activation

HK-2 cells 20 μM; 48 h

↓EMT

↓β-catenin nuclear

translocation

↑E-cadherin and SIRT1 mRNA

and protein

↓MMP7, α-SMA, and COLIA1

mRNA and protein

HK-2 cells 12.5 µM; 48 h

↓Ioxitalamate-induced

Cytotoxicity

Cytosolic DNA

fragmentation

8-OHdG formation

ROS production

↑Bcl-2 and survivin protein

↑ Caspase 3 activity

OX161 and UCL93 human renal

epithelial cells; MDCK canine renal

epithelial cells

2–50 µM; 48 h

↓Cyst number

↓MCP-1 protein and activity

↓TNF-α protein and activity

↓CFB protein and activity

↑SOD2 protein

HK-2 cells 20 µM; 12 h

↑Cell viability

↓Ph-NFκB protein

↓TNF-α, IL-1β, and IL-6 mRNA

and protein

↓IRE1 activation
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Cell
Resveratrol

Concentration/Duration
Effect Reference

HK-2 cells 25 µM; 72 h

↓High glucose-induced

oxidative stress

↓MDA and ROS activity

↑CAT and SIRT1 protein

↑SIRT1 activity

↓Acetyl-FOXO3a protein

TCMK-1 cells 25 µM; 72 h

↓Cadmium-induced apoptosis

↓mROS production

↑mSIRT3 protein and activity

↑PGC-1α and SOD2 mRNA

HK-2 cells 5–20, 40 µM; 72 h

5–20 µM RSV:

↓TGF-β-induced EMT

↓Cytotoxicity

↑SIRT1 and E-cadherin protein

↓α-SMA and fibronectin protein

↓Ph-Smad3

↓SIRT1-Smad3/4

40 µM RSV:

↑Cytotoxicity

↑mtROS release

↑Bax, fibronectin, and α-SMA

protein

↓Bcl-2 protein

↓ATP production

↓PGC-1α and TFAM protein

LKB1: liver kinase B1; eIF: eukaryotic translation initiation factor; eEF2: eukaryotic translation elongation factor 2;

p70S6K: ribosomal protein S6 kinase beta-1; AMPKα: AMP-activated protein kinase alpha; PUMA: pro-apoptotic p53

upregulated modulator of apoptosis; siRNA: small interfering RNA; GFP: green fluorescent protein; EMT: epithelial-to-

mesenchymal transition; MDA: malondialdehyde; TFAM: mitochondrial transcription factor A; Bcl-xL: B-cell lymphoma-

extra-large; Bax: Bcl-2-associated X; Bak protein: BCL2-antagonist/killer protein; α-SMA: α-smooth muscle actin; COLIA1:

collagen type I alpha 1; NOX: NADPH oxidase; MMP: matrix metalloproteinase; MCP-1: monocyte chemoattractant

protein 1; CAT: catalase; CFB: complement factor B; mROS: mitochondrial ROS; IL: interleukin; TFAM: mitochondrial

transcription factor A.

2.3. In Vitro Studies: Effects of Resveratrol on Cells of the Renal Corpuscle
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Renal podocytes are cells that wrap around the capillaries of the glomerulus in the Bowman’s capsule. Functionally,

podocytes, together with renal endothelial cells, form the filtration barrier and interact with mesangial cells to regulate

glomeruli function . Mouse podocytes treated with TGF-β1 to induce transdifferentiation followed with RSV treatment

resulted in significantly reduced albumin permeability across the podocyte monolayer, indicating reduced podocyte death

and increased percentage of E-cadherin expressing cells . Additionally, adhesion molecules P-cadherin, zonula

occludens-1 (ZO-1), and kin of IRRE-like protein 1 (NEPH1) protein levels were significantly increased, while α-SMA

protein levels were decreased with RSV treatment, indicating preserved podocyte function . In conjunction, treatment of

podocytes with RSV resulted in attenuation of the high glucose-induced mitochondrial stress, decreased mROS

production and increased membrane potential, all involved in diabetic nephropathy development . In addition, RSV

treatment increased respiratory chain complex I and III activities, while release of pro-apoptotic proteins (cytochrome C

and diablo) from the mitochondria was reduced, suggesting improved mitochondrial functioning and reduced podocyte

damage. Additionally, SIRT1, PGC-1α, nuclear respiratory factor 1 (NRF-1), and TFAM mRNA and protein levels were

increased with RSV treatment .

Overall, the studies suggest that treatment of cells of the renal corpuscle (podocytes) with RSV preserves membrane

integrity and metabolic flux. RSV treatment reduces albumin permeability and α-SMA protein levels, suggesting preserved

renal functioning. Increased mitochondria complex activities and decreased mROS production indicate increased

metabolic flux and decreased oxidative stress with RSV treatment. These data show that treatment of cells of the renal

corpuscle with RSV exhibit a kidney oxidative protective effect and improved function (Table 3).

Table 3. Effects of resveratrol on cells of the renal corpuscle.

Cell
Resveratrol

Concentration/Duration
Effect Reference

Mouse podocytes 2–5 µM; 30 min

↓Albumin permeability

↓Podocyte death

↑E-cadherin expression

↑P-cadherin, ZO-1, and NEPH1 protein

↓α-SMA protein

Immortalized

podocytes
10 μM; 48 h

↓High glucose-induced

Mitochondrial stress

mROS production

Cyto C and diablo release

↑Complexes I and III activities

↑Mitochondrial membrane potential

↑SIRT1, PGC-1α, NRF1, TFAM mRNA and

protein

ZO-1: zonula occludens-1; NEPH1: kin of IRRE-like protein 1; NRF1: nuclear respiratory factor 1.

2.4. In Vitro Studies: Effects of Resveratrol on Embryonic Kidney Cells

The development of the embryonic kidney begins with the invasion of the metanephric mesenchyme by the ureteric bud.

Under a series of morphogenetic events that convert the mesenchyme to epithelium, the basis of the mature nephron is

formed . The human embryonic kidney (HEK) 293 cell line is commonly used in research as a model of kidney cell

differentiation . In a study by Rössler et al. (2015), treatment of HEK293 cells with RSV resulted in increased early

growth response 1 (Egr-1) protein levels and the transcription of the Egr-1 responsive reporter gene, indicating increased

activity . In addition, RSV treatment increased ERK1/2 phosphorylation and Raf activation, while MAP kinase

phosphatase-1 (MKP-1) activity was impaired . ETS like-1 protein (Elk-1) transcriptional activity was significantly
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increased with RSV treatment. Importantly, inhibition of ERK or use of dominant negative Raf prevented the RSV induced

increased Egr-1 levels. These data suggest that RSV induces the expression of Egr-1 by ERK and Raf activation and

MKP-1 repression .

Ochratoxin A (OTA) is a nephrotoxin that results in the destruction of renal tubular epithelium resulting in progressive renal

failure, effects associated with decreased antioxidant activity and increased ROS production . Treatment of HEK293

cells with RSV resulted in significantly decreased intracellular ROS production; however, when co-treated with OTA, RSV

was unable to mitigate the increased ROS production . DNA damage was decreased in HEK293 cells treated with RSV

alone and co-treated with OTA, suggesting improved epithelium preservation. Additionally, OTA-induced 8-oxoguanine

glycosylase (OGG1) mRNA levels were significantly increased with RSV, indicating increased DNA repair. OTA-induced

glutathione (GSH) levels were significantly increased in cells treated with RSV, compared to OTA treated cells . Overall,

these data indicate that RSV treatment protects against nephrotoxin-induced DNA damage through decreased ROS

production and increased antioxidant GSH level.

Treatment of HEK293 cells with RSV resulted in significantly decreased high glucose-induced aging marker, β-

galactosidase, mRNA levels, indicating reduced aging. RSV treatment also increased high glucose-induced SIRT1 and

thioredoxin (Trx) mRNA levels while Trx interacting protein (TXNIP) mRNA levels were reduced indicating improved

intracellular antioxidant expression .

Overall, these studies suggest that treatment of embryonic kidney cells with RSV reduced toxin or aging-induced DNA-

damage and increased DNA-repair, indicative of improved cellular activity and longevity. In addition, RSV treatment

reduced OTA- and high glucose-induced oxidative stress with increased GSH enzyme activity and decreased ROS

production. These data show that RSV treatment protects embryonic kidney cells from DNA damage (Table 4).

Table 4. Effects of resveratrol on embryonic kidney cells.

Cell Resveratrol Concentration/Duration Effect Reference

HEK293 cells 20 μM; 24 h

↑Egr-1 protein

↑Egr-1 reporter mRNA

↑Ph-ERK1/2 protein

↓MKP-1 activity

↑Elk-1 transcriptional activation potential

HEK293 cells 25 μM; 24–48 h

↓OTA-induced

Oxidative stress

DNA damage

ROS production

↑OGG1 expression

↑GSH levels

HEK293 cells 2.5, 5, and 10 μM; 12–48 h

↓High glucose-induced

Aging

β-galactosidase mRNA

TXNIP mRNA

↑SIRT1 mRNA

↑Trx mRNA
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Egr-1: early growth response 1; MKP-1: MAP kinase phosphatase-1; Elk-1: ETS transcription factor; OTA: ochratoxin A;
OGG1: OTA-induced 8-oxoguanine glycosylase; GSH: glutathione; Trx: thioredoxin; TXNIP: Trx interacting protein.

2.5. In Vitro Studies: Effects of Resveratrol on Kidney Fibroblasts

Kidney fibroblasts are found in the interstitium, are involved in the production of ECM components, such as fibronectin

and collagen, and act to maintain ECM homeostasis by producing ECM-degrading proteases. With dysfunction,

fibroblasts continue to produce ECM components resulting in tubulointerstitial fibrosis and renal failure . Only one study

exists (by He et al. (2016)) on the effects of RSV treatment on kidney fibroblast cells . Treatment of NRF-49F fibroblasts

with RSV resulted in the attenuation of the high glucose-induced cell proliferation and dose-dependently reduced ROS

production. Additionally, RSV treatment increased phosphorylated AMPK and acetyl-CoA carboxylase (ACC) protein

levels, while NOX4, α-SMA, and fibronectin protein levels were decreased back to levels similar to control cells (Table 5)

. These data suggest that RSV treatment increased phosphorylated AMPK and ACC reduces oxidative stress marker

NOX4 activity and results in the reduction of ROS production.

Table 5. Effects of resveratrol on kidney fibroblasts.

Cell Resveratrol Concentration/Duration Effect Reference

NRF-49F cells 5, 10, and 20 µM; 1 h

↓High glucose-induced

Cell proliferation

Fibronectin protein

α-SMA protein

ROS production

NOX4 protein

↑High glucose-induced

Ph-AMPK

Ph-ACC

ACC: acetyl-CoA carboxylase.

2.6. In Vitro Studies: Effects of Resveratrol on Renal Cancer Cells

Renal cancer accounts for more than 140,000 deaths/year, ranking as the 13th most common cause of cancer death

worldwide . Renal cancer is characterized by decreased kidney filtration, anemia, and increased blood pressure,

resulting in impaired functioning and complete kidney failure . Increased expression of vascular endothelial growth

factor (VEGF) is associated with poor prognoses and increased metastasis . Treatment of human renal cancer cells

(786-0) with RSV resulted in reduced cell growth that was associated with reduced VEGF mRNA and protein levels .

Signal transducers and activators of transcription (STAT) proteins are upregulated in various malignancies, including renal

cancer. Treatment of Caki-1 and 786-0 renal cancer cells with RSV promoted cell apoptosis and reduced cell survival as

seen by the reduced colony formation . RSV inhibited phospho-STAT3 (tyrosine 705 and serine 727), phospho-STAT5

(tyrosine 684 and tyrosine 699), and nuclear STAT3 and STAT5 protein levels, while protein tyrosine phosphatase (protein

tyrosine phosphatase (PTP)ε and Src homology- 2 domain containing phosphatase (SHP-2)) mRNA and protein levels

were increased . Additionally, the protein levels of phosphorylated upstream kinases (Janus kinase (JAK)1, JAK2, and

Src) were significantly inhibited by RSV. Bcl-2, bcl-xL, survivin, inhibitor of apoptosis (IAP)-1, and IAP-2 protein levels

were reduced, while caspase-3 protein level and poly (ADP-ribose) polymerase (PARP) cleavage were increased by RSV

treatment in both renal cancer cell lines .

Treatment of ACHN and A498 renal carcinoma cells with RSV resulted in significantly impaired cell growth, cell-to-cell

contact, and migration . RSV treatment inhibited the formation of filopodia, which are actin-rich microspikes that project

out of the cell cytoplasm and are involved in migration. Additionally, RSV treatment reduced EMT markers (N-cadherin
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and vimentin), transcriptional repressor (Snail), tumor metastasis markers (MMP-2 and MMP-9), phosphorylated Akt, and

ERK1/2 protein levels, while cell invasion suppressor marker (E-cadherin and tissue inhibitors of metalloproteinase 1

(TIMP-1)) protein levels were increased .

Overall, these studies suggest that treatment of renal carcinoma cells with RSV resulted in reduced cell proliferation,

survival, and migration. RSV treatment promoted cell apoptosis and pro-apoptotic protein expression. These limited

studies indicate protective effects of RSV against renal cancer (Table 6).

Table 6. Effects of resveratrol on renal cancer cells.

Cell
Resveratrol

Concentration/Duration
Effect Reference

786-0 cells
0, 10, 20 and 40 µM; 24, 48

and 72 h

↓Cell growth

↓VEGF mRNA and protein

Caki-1 and 786-

0 cells
0, 10, 30 and 50 µM; 6 h

↑Apoptosis

↓Survival

↓Migration

↓STAT3 and STAT5 activation

↑PTPε and SHP-2 protein

↓JAK1, JAK2, and c-Src protein

↓Bcl-2, bcl-xL, survivin, IAP-1, and IAP-2 protein

↑Caspase-3 protein

ACHN and

A498 cells
50 μM; 12 h

↓Cell growth

↓Cell-to-cell contact

↓Migration

↓Filopodia formation

↓N-cadherin, vimentin, snail, MMP-2, MMP-9, ph-

Akt and ph-ERK1/2 protein

↑E-cadherin and TIMP-1 protein

VEGF: vascular endothelial growth factor; STAT: Signal transducers and activators of transcription; PTP: protein tyrosine

phosphatase; SHP-2: Src homology- 2 domain containing phosphatase; JAK: Janus kinase; IAP: inhibitor of apoptosis;

TIMP: tissue inhibitors of metalloproteinase 1.

2.7. In Vivo Animal Studies: Effects of Resveratrol on Diabetic Nephropathy

Diabetic nephropathy is a major complication of T2DM, that results in glomeruli damage and an inability to correctly filter

the blood . Multiple models of diabetic nephropathy including genetic models db/db and C57BL/KsJ db/+ mice and

chemical-induced streptozotocin (STZ) administered rats and mice were utilized to determine the effects of RSV

treatment.

Overall, the studies suggest that treatment of animals suffering from diabetic nephropathy with RSV attenuates

hyperglycemia, hyperlipidemia and improves kidney structural integrity and kidney function. RSV administration

decreased urinary albumin and serum creatinine levels, indicating improved kidney functioning. In addition, renal oxidative

stress, inflammatory cell infiltration, cytokine production, and MDA content were reduced with RSV administration, while
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antioxidant enzyme activity and SIRT1 expression were increased. These data show that RSV treatment has protective

effects against diabetic nephropathy (Table 7).

Table 7. Effects of resveratrol on diabetic nephropathy (animal studies).

Animal
Resveratrol

Concentration/Duration
Serum Effects Other Effects Reference

db/db mice 0.3% diet; 8 weeks

↓Glucose levels

↓Insulin levels

↓Triglyceride levels

↓FFA levels

↓Albuminuria

↓Mesangial expansion

↓Fibronectin accumulation

↓Macrophage infiltration

↑O  scavenging

↑MnSOD activity

↓Mitochondrial biogenesis

mRNA

Male Wistar

rats
5 mg/kg/day; 16 weeks

↓Glucose levels

↓SOD activity

↓TBARS levels

↓TNF-α

↓IL-6

↓Apoptosis rate of kidney cells

↓NF-κB activity

Male Wistar

rats
20 mg/kg/day; 8 weeks

↓Glucose levels

↓Creatinine levels

↓Urinary protein excretion

↓Renal hypertrophy

↓Mesangial matrix expansion

↓Mesangial cell hyperplasia

↓GSTM expression
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Animal
Resveratrol

Concentration/Duration
Serum Effects Other Effects Reference

db/db mice 20 mg/kg/day; 12 weeks No measured effects

↓Kidney albuminuria

↓Kidney NEFA and

triacylglycerol

↓Mesangial area

↓Oxidative stress

↓Type IV collagen

↓TGF-β1

↓F4/80 positive cells

↑Ph-AMPK

↑SIRT1 protein

↓PI3K-Akt protein and activity

↓Ph-FOXO3a

↓BAX protein

↑BCL-2 production

↓Renal and Urinary 8-OHdG

FVB mice 10 mg/kg/day; 12 weeks No measured effects

↓Glomerular area

↓Extracellular matrix

↓Albumin levels

↓Ph-Akt protein

↓PAI-1 protein

↓ICAM-1 protein

↓PCNA mRNA

Sprague–

Dawley rats
200 mg/kg/day; 12 weeks No measured effects

↓Glomerular area

↓Mesangial cell expansion

↓Glomerular basement

membrane thickness

↓Collagen IV

↓Fibronectin

↑AdipoR1 expression

↓MDA production

[76]
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Animal
Resveratrol

Concentration/Duration
Serum Effects Other Effects Reference

Male Wistar

rats
10 mg/kg/day; 30 days

↓Glucose levels

↓Urea nitrogen levels

↓Glomeruli sclerotic changes

↓Epithelial desquamation

↓Tissue swelling

↓Intracytoplasmic vacuolization

↓Brush border loss

↓Kidney TGF-β1

↑SOD and CAT activities

↓MDA levels

db/db mice 40 mg/kg/day; 12 weeks
↓BUN levels

↓Creatinine levels

↓Glomerulosclerosis

↓Tubulointerstitial fibrosis

↓Albuminuria

↑Kidney SOD, Mn-SOD,

Catalase protein

↓Renal MDA

↓α-SMA protein

↓E-cadherin protein

↓TGF-β, pSmad3, ph-Akt, ph-

ERK

↓IGF-1R expression

↑HRD1 expression

db/db mice 20 mg/kg/day; 12 weeks

↓Triacylglycerol levels

↓NEFA levels

↑Adiponectin levels

↓Glomerular matrix expansion

↓Albuminuria

↑AdipoR1 and AdipoR2

↑Ph-AMPK, SIRT1, total

FoxO1, total FoxO3a

↑PGC-1α, ERR-1α, ph-ACC

↓SREBP-1c

↓Bax

↑Bcl-2

↓8-OHdG levels

↓8-isoprostane levels

[77]
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Animal
Resveratrol

Concentration/Duration
Serum Effects Other Effects Reference

db/db mice 40 mg/kg/day; 12 weeks No measured effects

↓Mesangial area

↓Albuminuria

↓Collagen deposition

↓FSP-1, α-SMA, and fibronectin

protein

↓NOX4 protein

↑Ph-AMPK, ph-ACC

Sprague-

Dawley rats
5 mg/kg/day; 4 months

↓Glucose levels

↓Cholesterol levels

↓Triglyceride levels

↓HbA1c levels

↓Creatinine levels

↓Urea nitrogen levels

↓Cycstatin C levels

↓TNF-a, IL-6, IL-1B,

and IL-10 levels

↓Albuminuria

↓Renal 8-OHdG

↑SIRT1 mRNA and protein

↑Atg5 and Atg7 mRNA

Male Wistar

rats
30 mg/kg/day; 16 weeks ↓Creatinine levels

↑Renal function

↓Kidney weight

↑Kidney SOD activity

↓Kidney MDA content

↑CAT protein

↓SIRT1 protein

↑SIRT1 activity

↓Acetylated-FOXO3a

[69]
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Animal
Resveratrol

Concentration/Duration
Serum Effects Other Effects Reference

Sprague-

Dawley rats
20 mg/kg/day; 4 weeks

↓Glucose levels

↓Creatinine levels

↓Kidney weight

↓Glomerular thickening

↓Interstitial fibrosis

↓Epithelial cellular vacuolar

degeneration

↓Hyaline casts

↓Arteriolopathy

↓Ph-p38 and p38 protein

↓TGF-β1 protein

↓Fibronectin protein

↓Urinary albumin

Male Wistar

rats
5 mg/kg/day; 45 days No measured effects

↓Renal hypertrophy

↓Mesangial expansion

↓Fibrosis

↓Oxidative damage

↓Kidney AGE accumulation

↓DNA damage

↓4-HNE protein

↓Caspase-3 protein

↓Cleaved caspase-3 protein

C57BL/KsJ

db/+ mice
10 mg/kg/day; 8 weeks

↓Glucose levels

↓Insulin levels

↓IL-1β, IL-17, IL-10

and TNF-α levels

↑IL-6 and VEGF levels

↓Renal cell apoptosis

↓Apaf-1, caspase-3, caspase-8

and caspase-9 mRNA

↓Ph-AMPK

↓Total thiol level

↑GSH level

[43]
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Animal
Resveratrol

Concentration/Duration
Serum Effects Other Effects Reference

CD-1 mice 30 mg/kg/day; 12 weeks

↓Glucose levels

↓Cholesterol levels

↓Urea nitrogen levels

↓Glomerular thickening

↓Mesangial area

↑Podocyte mitochondria

↓Renal cell apoptosis

↑Nephrin, SIRT1, PGC-1α,

NRF1, TFAM protein

↓Kidney MDA content

↓Kidney Mn-SOD activity

FFA: free-fatty acid; TBARS: thiobarbituric acid reactive substances; GSTM: glutathione S-transferase Mu; NEFA: non-

esterified fatty acid; 8-OHdG: 8-hydroxydeoxyguanosine; PAI: plasminogen activator inhibitor; ICAM: intercellular

adhesion molecule; PCNA: proliferating cell nuclear antigen; SOD: superoxide dismutase; Mn-SOD: manganese

superoxide dismutase; BUN; blood urea nitrogen; IGF-1R: insulin-like growth factor 1 receptor; HRD1: 3-hydroxy-3-

methylglutaryl reductase degradation; ERR: estrogen-related receptor; SREBP: sterol regulatory element-binding protein;

FSP: fibroblast-specific protein; HbA1c: hemoglobin A1c; Atg: autophagy related; AGE: advanced glycation end

production; 4-HNE: 4-Hydroxynonenal; Apaf: Apoptotic protease activating factor.

2.8. In Vivo Animal Studies: Effects of Resveratrol on Renal Fibrosis

Renal fibrosis is often characterized by glomerulosclerosis and tubulointerstitium damage and is the final symptom

manifestation of CKDs. Additionally, renal fibrosis can be pathologically described with inflammatory infiltration, loss of

renal parenchyma due to tubular atrophy, capillary loss, and podocyte depletion .

Overall, the studies suggest that administration of RSV to animal models of renal fibrosis reduced extracellular matrix

protein deposition, reduced tubulointerstitium damage, and mesangial cell proliferation. RSV reduced serum creatinine

levels and kidney oxidative stress, while kidney antioxidant enzymes (SOD, CAT, GPx, and GSH) were increased. In

addition, RSV treatment improved mitochondrial biogenesis, mitochondrial complex I and III activities, and electron

transport protein expression, while mPTP opening and fission protein expression were reduced. RSV treatment also

exerted anti-inflammatory effects, by reducing mRNA and protein expression of pro-inflammatory signaling molecules and

cytokines. These data demonstrate that RSV treatment exerts protective effects against renal fibrosis (Table 8).

Table 8. Effects of resveratrol on renal fibrosis (animal studies).

Animal
Resveratrol

Concentration/Duration
Serum Effects Other Effects Reference

Sprague–Dawley rats 10 mg/kg/day; 21 days ↓MDA levels

↓Urine calcium oxalate

crystals

↓Hyaluronan protein

↓Osteopontin protein

↑GPx protein

↑CAT protein

↑SOD protein

[61]
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Animal
Resveratrol

Concentration/Duration
Serum Effects Other Effects Reference

Male Wistar rats
8 mg/kg/alternating days; 8

days

↓Creatinine

levels

↓Urea nitrogen

levels

↓Oxidative stress

↓Renal tubular epithelial cell

necrosis

↓MDA, BUN, CRE, and

ROS levels

↑SOD and GPx levels

↑Selenium content

C57BL/6J mice 20 mg/kg/day; 14 days
No measured

effects

↓Extracellular matrix

deposition

↓Tubulointerstitium damage

↓Oxidative stress

↓ICAM-1 mRNA

↓TNF-α mRNA

↓TGF-β mRNA

↓Acetyl-Smad3

↓Fibronectin

UUO-Sprague-Dawley

rats
20 mg/kg/day; 7–14 days

↓Creatinine

levels

↓Renal interstitial damage

↓Tubular dilation and

atrophy

↓Collagen deposition

↓Inflammation cell infiltration

↓α-SMA and type III

collagen mRNA and protein

↑E-cadherin protein and

mRNA

↓TGF-β1 expression

I/R and UUO C57BL/6

mice
20 mg/kg/day; 6 weeks

↓Creatinine

levels

↓BUN levels

↑α-SMA protein

↑COL1A1 protein

[84]
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Animal
Resveratrol

Concentration/Duration
Serum Effects Other Effects Reference

Sprague–Dawley rats 50 mg/kg; 8 h

↓Creatinine

levels

↓Urea nitrogen

levels

↓Apoptosis

↑SIRT1 activity and protein

↑SIRT3 activity and protein

↑SOD2 protein

↓Acetyl-SOD2

↑GSH and ATP content

↑GSH/GSSG ratio

↑CAT activity

↓mPTP opening

Male cystic (Cy/+) rats 200 mg/kg/day; 5 weeks

↓BUN levels

↓Creatinine

levels

↓Cyst density

↓Macrophage infiltration

↓MCP-1

↓TNF-α

↓CFB

↓Ph-p65, ph-S6K and p50

Sprague–Dawley rats
3 and 10 mg/kg/injection;

70 h

↓BUN levels

↓Creatinine

levels

↓Nitrogen levels

↑Survival

↓Cystatin C

↓KIM-1

↓TNF-α

↓IL-1B

↓IL-6

↓Renal injury index

Kunming mice 10 mg/kg/day; 1 week

↓BUN levels

↓Creatinine

levels

↓Apoptosis

↓Caspase-3 activity

↓Bax protein

↓ERK1/2 protein

[86]
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Animal
Resveratrol

Concentration/Duration
Serum Effects Other Effects Reference

Male AKI rats 30 mg/kg; 12 h

↓Creatinine

levels

↓Urea nitrogen

levels

↓TNF-α, IL-1β,

IL-6 levels

↑Renal function

↓Tubular epithelial cell injury

↑Survival

↓p-65 positive cells

↓Renal TNF-α, IL-1β, IL-6

mRNA

↓IRE1 protein

5/6 Nephrectomized

Sprague–Dawley rats
20 mg/kg/day; 4 weeks

No measured

effects

↓Mesangial cell proliferation

↓Glomeruli matrix expansion

↓TGF-β

↑ATP production

↓ROS production

↑Activities of complex I and

III

↑ATP synthase B

↑COX I, Opa1, Mfn2

↓Drp1

C57BL/6 mice
25 and 100 mg/kg/day; 2

weeks

↓Creatinine

levels

25 mg/kg RSV:

↓Renal fibrosis

↓Tubular lesion score

↓Interstitial collagen

deposition

↓α-SMA protein

↓Snail protein

↓Fibronectin protein

↑SIRT1

↓Phospho-Smad3

100 mg/kg RSV:

↑Renal fibrosis

↑α-SMA and TFAM

CRE: creatinine; GPx: glutathione peroxidase; mPTP: mitochondrial permeability transition pore; KIM-1: kidney injury

molecule 1; IRE-1: Inositol-requiring enzyme 1; Opa1: optic atrophy 1; Mfn2: mitofusin 2; Drp1: dynamin related protein 1.
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3. Effects of Resveratrol on Human Kidneys

Only two clinical studies exist measuring the effects of RSV in humans with kidney disease. In a randomized, double-

blinded pilot study by Saldanha et al. (2016), administration of RSV (500 mg/day) for 4 weeks to non-dialyzed chronic

kidney disease (CKD) patients (GFR between 15 and 60 mL/min/m ) resulted in no significant effects. Antioxidant and

anti-inflammatory marker levels were the same in RSV and placebo supplemented participants . It should be

emphasized that administration of RSV (500 mg/day) for 4 weeks had low toxicity.

In another randomized, double-blinded study by Lin et al., low-dose (150 mg/day) or high-dose (450 mg/day) of RSV

intake for 12 weeks by peritoneal dialysis (PD) patients resulted in significant improvements in mean net ultrafiltration (UF)

volume and rate . In addition, angiogenesis markers, VEGF, fetal liver kinase-1 (Flk-1), and angiopoietin (Ang)-2 levels

in peritoneal dialysate effluent (PDE) were significantly reduced in the high-dose RSV group. The levels of angiopoietin

receptor (Tie-2) and thrombospondin-1 (Tsp-1) in the PDE were increased with RSV treatment . These data suggest

that RSV treatment has angiogenesis-ameliorating effects in PD patients and improves ultrafiltration kidney function. It

should be mentioned that in the study by Saldanha et al.  administration of 500 mg RSV/day for 4 weeks resulted in no

significant effects, while in the study by Lin et al.  administration of 450 mg RSV/day for 12 weeks resulted in significant

improvements and health benefits, suggesting that longer duration of administration of a specific dose of RSV (450 or 500

mg/day) may be required to see/elicit beneficial effects.

Other clinical studies exist showing beneficial effects of RSV administration in cardiovascular disease, diabetes mellitus

and cancer, however, the effect of RSV supplementation in kidney disease patients has not been extensively studied

. In a randomized, double-blinded study by Brasnyo et al. (2011), oral administration of RSV (10 mg/day) in type 2

diabetic (T2DM) individuals (following the WHO diagnostic guidelines), significantly increased insulin sensitivity and

reduced serum glucose and cholesterol levels . In addition, RSV treatment significantly reduced serum creatinine levels

and maintained GFR, suggesting improved kidney function . In a similar randomized, open-label, controlled study,

administration of RSV (250 mg/day) for 4 months in T2DM patients (3 year duration of T2DM and minimum 6 months oral

hypoglycemic treatment) resulted in significantly improved lipid profile, with reduced total cholesterol and triglyceride

levels  [117]. Serum creatinine, urea nitrogen levels, and total protein excretion were reduced with RSV treatment,

suggesting improved kidney function . These studies  show that treatment of individuals with T2DM and impaired

kidney function with RSV resulted in improved glucose, insulin, and lipid homeostasis and better kidney function.

Although there are numerous studies measuring the effects of RSV in diabetes, the studies mentioned above were

performed in individuals with established CKD and diabetic nephropathy and show a kidney-protective effect of RSV

administration. These data highlight the importance of future clinical trials required to investigate the exact effects of RSV

in individuals with kidney disease (Table 9).

Table 9. Effects of resveratrol on human kidneys.

Patients Resveratrol Concentration/Duration Effect Reference

Nondialyzed CKD patients 500 mg/day; 4 weeks No significant effects

PD patients 150 and 450 mg/day; 12 weeks

↓UF volume and rate

↓PDE VEGF, Flk-1 and Ang-2

↑PDE Tie-2 and Tsp-1

T2DM patients 10 mg/day; 4 weeks

↑Kidney filtration

↑Insulin sensitivity

↓Glucose levels

↓Lipid levels

↓Serum creatinine

2
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Patients Resveratrol Concentration/Duration Effect Reference

T2DM patients 250 mg/day; 4 months

↑Kidney function

↓Cholesterol levels

↓Triglyceride levels

↓Serum creatinine

↓Total protein excretion

↓Urea nitrogen levels

CKD: chronic kidney disease; PD: peritoneal dialysis; UF: ultrafiltration; PDE: peritoneal dialysate effluent; Flk-1: fetal liver

kinase 1; Ang: angiopoietin; Tie-2: angiopoietin receptor; Tsp-1: thrombospondin-1; T2DM: type 2 diabetes mellitus.

4. Effects of RSV at the Cellular/Molecular Level

Resveratrol has been found to affect a number of different signaling molecules in kidney cells (Figure 2). RSV inhibited

the PDGF  and TGF-β1 response in mesangial  and epithelial  cells. It decreased oxidative stress

, as shown by decreased ROS and MDA levels and increased antioxidant enzyme activity and improved

mitochondrial biogenesis  (Figure 2). Activation of the energy sensor AMPK  and increased SIRT1

 and PGC-1  levels were seen with RSV treatment. The deleterious effects of high glucose on kidney cells

were diminished with RSV treatment  (Figure 2).

Figure 2. Effects of resveratrol on cellular signaling molecules. The figure was created based on the data of the studies

. AKT: protein kinase B; PDK: pyruvate dehydrogenase kinase; PIP3: phosphatidylinositol-3,4,5-

triphosphate; PIP2: phosphatidylinositol 4,5-bisphosphate; ERK: extracellular signal-regulated kinase; PI3K:

phosphoinositide 3-kinase; Grb: growth factor receptor-bound protein; PDGF: Platelet-derived growth factor; EMT:

extracellular matrix transition; JNK: c-Jun N-terminal kinase; AMPK: AMP-activated protein kinase; SIRT: sirtuin; PGC:

Peroxisome proliferator-activated receptor gamma coactivator; NF-κB: nuclear factor kappa-light-chain-enhancer of

activated B cells; TGF-β: transforming growth factor beta.

5. Conclusions and Future Directions

Overall, all available in vitro and in vivo animal and human studies examining the effects of RSV in kidney disease

indicate that it can reduce fibrosis, mesangial expansion, oxidative stress, and inflammatory cytokine levels, while

improving kidney structure and function. Treatment of renal mesangial, epithelial, and corpuscle cells with RSV resulted in
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reduced structural changes and ROS production, while antioxidant and mitochondrial activities were improved. In addition,

RSV treatment reduced fibroblast proliferation and activation to improve kidney structural maintenance. Renal cancer cells

treated with RSV had reduced cell growth, cell-to-cell contact, and migration, and increased apoptosis.

In in vivo animal models of diabetic nephropathy treatment with RSV showed improved glucose homeostasis, reduced

inflammation and increased antioxidant activity and kidney function. Animals with renal fibrosis administered RSV had

reduced structural changes and inflammatory cell infiltration, cytokine expression, and decreased tubulointerstitium

damage and oxidative stress.

The limited human studies indicate a protective effect of RSV administration on chronic kidney disease with increased

kidney filtration rates and volume. The health benefits of RSV are widespread, and the low toxicity of the molecule makes

it a prime candidate for medicinal use against kidney disease. However, more research and clinical studies are required to

fully understand the effects of RSV on kidney disease.

Further investigation and clarification are required in the following areas: (1) dosage and bioavailability, (2) metabolism,

tissue distribution, and biological effects of RSV analogs and metabolites, and (3) signaling mechanisms involved.

Only limited number of studies exist examining RSV administration in humans. More studies should be performed to

determine the optimal dosage and route of administration of RSV and analogs with higher biological activity. RSV analogs

(methylated and with other novel derivatives) may have great biological activity [54]. Most in vitro studies and evidence

have used RSV and not its metabolites. The potential biological activity of RSV metabolites should be considered in future

investigations.

Furthermore, future research should be conducted examining the exact signaling/cellular mechanisms affected by RSV

and contributing to the attenuation of kidney disease.
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