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Stress granules are membrane-less organelles formed through the process of liquid–liquid phase separation (LLPS)

under certain stress conditions, such as oxidative stress and heat shock, among others.
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive degeneration of

the upper and lower motor neurons, resulting in a loss of motor function and eventually death. About 10% of ALS cases

are familial (fALS), while about 90% are sporadic (sALS). Identification of ALS-causative genes, including superoxide

dismutase 1 (SOD1), transactive response DNA-binding protein 43 (TARDBP-43), fused in sarcoma (FUS), chromosome

9 open reading frame 72 (C9orf72), heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), valosin-containing protein

(VCP), ubiquilin 2 (UBQLN2), sequestosome 1 (SQSTM1/p62), annexin A11 (ANXA11), optineurin (OPTN), and TANK

(TRAF-associated NF-κB activator)-binding kinase 1 (TBK1) have advanced the understanding of ALS pathogenesis. ALS

gene products are considered resident stress granule (SG) components or SG-associated proteins (Table 1) .

Table 1. The representative ALS-causative proteins.

Protein Associated
NDDs

Important
Structures Function Main Pathogenesis Role in SG

Dynamics References

TDP-43 FTD, ALS,
PD, HD

C-terminal
Glycine-rich
domain, RNA
recognition

motifs (RRM1
and RRM2),

nuclear
localization
signal and

nuclear export
signal

Regulates mRNA
splicing, translation,
transportation and

stability

Mutations cause loss
of TDP-43 nuclear

function and
cytoplasmic

accumulation

SG
component

Reviewed
in 

FUS FTD, ALS

N terminal prion-
like domain,

RNA recognition
motif, C terminal

nuclear
localization

signal

RNA- binding protein
aids RNA

transcription and
splicing

Mutations on NLS
impair the FUS nuclear

transport causing
cytoplasmic
aggregation

SG
component

Reviewed
in 

C9ORF72 ALS, FTD -
Affect transcription,

translation and
RNA transport

Abnormal
hexanucleotide

GGGGCC repeat
amplification

Cause stress
and interact

with SG
proteins

Reviewed
in 

SOD1 ALS -
An antioxidant

enzyme detoxifying
superoxide

Mutated SOD1 exposes
hydrophobic surfaces
and N-terminal short

region increasing
aggregation propensity

Cause stress
and interact

with SG
proteins

Reviewed
in 
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Protein Associated
NDDs

Important
Structures Function Main Pathogenesis Role in SG

Dynamics References

UBQLN2 ALS, FTD

Ubiquitin-like
domain (UBL),

UBA, four
stress-induced
protein 1-like

domains (STI-1
like), PXX
domain

Directs misfolded or
redundant proteins
to the proteasome,

acts in
macroautophagy

Missense mutations
SG

autophagic
clearance

Reviewed
in 

ANXA11 ALS

Four conserved
annexin (ANX)
domains, low-

complexity
domain (LCD)

Regulates
cytokinesis, vesicle

trafficking,
apoptosis,

intracellular Ca
homeostasis and

stress granule
dynamics

Missense mutations

Cause stress
and interact

with SG
proteins

Reviewed
in 

VCP FTD, ALS

N-terminal
domain, ATP-

binding domains
D1 and D2

DNA damage
response, cell cycle
control, autophagy,
and SG clearance

Mutations disrupt the
autophagic

degradation of
ubiquitinated proteins,

resulting in the
accumulation of non-

degradative
autophagosomes

SG
component;

SG
autophagic
clearance

Reviewed
in 

MATR3 ALS, FTD,
AD

Two tandem
RNA-recognition
motifs, two zinc
finger domains

Alternative splicing,
mRNA stability,

transcription and
mRNA nuclear export

Missense mutations SG
component

Reviewed
in 

NDD: neurodegenerative disease; PD: Parkinson’s disease; AD: Alzheimer’s disease; HD: Huntington’s disease; ALS:

amyotrophic lateral sclerosis; FTD: frontotemporal dementia.

Stress granules are membrane-less organelles formed through the process of liquid–liquid phase separation (LLPS)

under certain stress conditions, such as oxidative stress and heat shock, among others . SGs are transient cellular

compartments that undergo dynamic assembly and dissociation. However, chronic stress can lead to persistent stress

granules, eventually resulting in the aggregation of disease-related proteins.

Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved lysosomal degradative pathway,

which is essential in the cellular and organismal levels of homeostasis . Morphologically, autophagy is initiated by

the formation of phagophores in mammalian cells. After nucleation of the phagophore, the membrane expands to

generate an autophagosome, which fuses with a lysosome or vacuole, leading to the degradation of the cargo 

. Clearance of the cytosolic components, such as protein aggregates, is conferred by cargo receptors that specifically

recognize the cargo . Dysfunction of autophagy is highly associated with various human diseases

, such as neurodegenerative diseases.

Protein aggregates derived from interrupted SG dynamics pose a toxic insult, which can be partially mitigated by a

selective autophagy pathway called aggrephagy (Figure 1). Aggresomes formed by those insoluble protein aggregates

and labeled by ubiquitins are considered to initiate the process of aggrephagy. Aggresomes are transported to a

microtubule-organizing center with the help of histone deacetylase 6 (HDAC6), which binds to ubiquitinated cargos .

Aggrephagy is controlled by a panel of receptor proteins, such as p62, next to BRCA1 gene 1 (NBR1), toll interacting

protein (TOLLIP), OPTN, and Tax1 binding protein 1 (TAXBP1) . Mechanistically, these receptors bridge ubiquitinated

protein aggregates with autophagosomal membranes by simultaneously binding to ubiquitin chains and the lipidated LC3-

family proteins via ubiquitin-associated (UBA) domains and LC3 interacting region (LIR) motifs, respectively . These

receptors are able to work both independently and cooperatively. For instance, NBR1 can interact with p62 and promote

its phase separation . Autophagy-linked FYVE-domain containing protein (ALFY) interacts with p62 and binds to

several autophagy-related proteins, playing a role in the formation of autophagic membranes. The fusion between

aggresomes and lysosomes involves proteins including Rab7, marking the final degradation of protein aggregates . It

should be noted that the mutations of two of these aggrephagy receptors, p62 and OPTN, are implicated in ALS.
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Figure 1. Schematic representation of aggrephagy.

Loss of SG homeostasis and defective aggrephagy are common pathological features of neurogenerative diseases 

. VCP is encoded by an ALS causal gene and is a critical regulator mediating autophagic degradation of

abnormal stress granules . In this review, we will discuss the intersection of aggrephagy and stress granules in the

pathogenesis of ALS.

2. Superoxide Dismutase 1 (SOD1)

Superoxide dismutase 1 gene encoding Cu/Zn superoxide dismutase was the first identified ALS-related gene . The

enzyme protects cells by detoxifying superoxide radicals O . SOD1 gene mutations account for approximately 20% of

fALS. Although no consensus linking SOD1 mutations to toxicity has been reached , it is generally accepted that

ubiquitinated cytoplasmic inclusions formed by ALS-causing SOD1 mutants contribute to toxicity in ALS . Most ALS-

associated mutations significantly impact the immature states of SOD1, destabilizing the metal-free and disulfide-reduced

polypeptide, which leads to unfolding at physiological temperatures . Moreover, mutations that change the

hydrophobicity of SOD1 or cause cellular Ca  dysregulation promote the aggregation tendency of SOD1 mutants in ALS

. In addition, T cell-restricted intracellular antigen 1 (TIA-1) positive SGs can alter the dynamics of stress granules

.

SOD1 is not a resident protein of SGs. However, mutant SOD1 interacts with TIA-1, one of the core components of stress

granules associated with ALS. Mutant SOD1 increases the number of TIA-1 positive SGs. The abnormal interaction

between mutant SOD1 and TIA-1 alters the dynamic of stress granules . In addition, mutant SOD1 binds to GTPase-

activating protein-(SH3 domain)-binding protein 1 (G3BP1), another protein marker of SGs, in an RNA-independent

manner interfering with the dynamics of G3BP1-positive SGs . Therefore, these findings suggest that aberrant

interactions between SOD1, TIA-1, and G3BP1 might dysregulate SG.

Mutant SOD1 aggregates can be recognized by p62 and targeted for autophagic degradation . Furthermore, mutant

SOD1 aggregates may sequester OPTN, resulting in a reduced mitophagy flux, accounting for neurodegeneration .

However, whether the perturbation of SGs dynamics by SOD1 mutants impacts protein aggregation tendency remains

unclear. Further studies are needed to confirm the exact role of aggrephagy in SOD1-associated ALS and the specific

aggrephagy receptors involved .

3. Transactive Response DNA-Binding Protein 43 (TDP-43)

Transactive response DNA-binding protein 43 belongs to the heterogeneous ribonucleoprotein family. TDP-43 plays a

critical role in diverse cellular processes, such as regulating RNA splicing, pre-microRNA processing, messenger RNA

transport, and stress granule formation . Hyper-phosphorylated, ubiquitinated, and cleaved TDP-43 aggregation has

been identified as a pathological protein in disease-affected central nervous system regions . Furthermore, TDP-43 has

been detected as abnormal cytoplasmic aggregates in neurons and glia of more than 90% of ALS and 45% of

frontotemporal dementia (FTD) cases .

TDP-43 can aggregate and propagate in a seed-dependent, self-templating, prion-like manner in vitro and in vivo .

Under chronic cell stress, TDP-43 is recruited to the cytoplasmic SGs, which evolve to form insoluble pathological

aggregates . TDP-43 also interacts with the four other ALS causal gene products, HNRNPA1, HNRNPA2B1, matrin

3 (MATR3), and UBQLN2 , which are resident proteins in SGs. The identification of TIA-1 as an ALS causal

gene further reinforces the fact that TDP-43 in ALS is formed via altered LLPS . These observations suggest that many

ALS causal genes may converge on the TDP-43 pathway associated with pathologies.

Several studies have confirmed that autophagy plays a role in clearing TDP-43 aggregates. Significant colocalization

between selective autophagy receptor p62 with TPD-43 aggregates was observed in ALS/FTD, indicating that the
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autophagy pathway could prevent the accumulation of TDP-43 aggregates . In addition, VCP and OPTN appear to

colocalize with TDP-43 inclusions in the spinal motor neurons of ALS patients . Upregulation of autophagy leads to

reduced TDP-43 proteinopathy in the nervous system of ALS/FTD transgenic mice models, which further validates the

role of autophagy in mitigating toxicity of TDP-43 mutants . Conversely, TDP-43 also plays a role in the regulation of

autophagy by binding to ATG7 mRNA via RNA recognition motif 1(RRM1). Down-regulation of TDP-43 decreases ATG7

mRNA levels, which abolishes autophagosome expansion . Furthermore, the loss of TDP-43 impairs the fusion of

autophagosomes with lysosomes through decreasing dynactin 1, a component of the dynein-dynactin complex involved in

lysosome transportation. The impaired fusion finally leads to the accumulation of immature autophagic vesicles blocking

the autophagy-lysosome pathway .

4. Fused in Sarcoma (FUS)

FUS was first discovered in 1993 as a fusion oncogene in human liposarcoma located on chromosome 16 . It

contains 15 exons encoding a 526-amino acid protein. Moreover, it contains an N-terminal Gln-Gly-Ser-Tyr (QGSY)-rich

domain, an RNA-recognition motif, three Arg-Gly-Gly repeat domains (RGG1-3), a zinc-finger motif and a C-terminal

nuclear localization signal (NLS) . In 2009, pathological inclusion bodies containing mutant FUS protein were

recognized in fALS6 cases . Approximately 2/3 of FUS mutations are located on exons 12–15, which encode zinc-

finger motif, RGG2 and RGG3 domains, and the NLS. Other mutations are located on exons 3–6, encoding QGSY-rich

and RGG1 domains. The C-terminal mutations are twice as likely to occur in fALS than in sALS, while mutations within

exons 3–6 are more common in sALS. C-terminal ALS mutations are pathological, as they disrupt NLS . They cause

defective nuclear import of FUS and cytoplasmic mislocalization. Cytoplasmic FUS mislocalization leads to nuclear loss of

function and triggers motor neuron death through a toxic gain of function .

Arginine residues in RGG motifs are required for phase separation of FUS. Loss of FUS arginine methylation promotes

phase separation and SG association of FUS . Prion-like domains of FUS are located on the QGSY-rich and C-terminal

RGG2 domain, contributing to FUS phase separation and aggregation. ALS-associated FUS mutants can bind and

sequester wild type (WT) FUS into cytoplasmic SGs , accelerating aberrant liquid to solid phase transition of stress

granules . The nuclear import receptor (NIR), also known as Transportin-1, recognizes the NLS domain; therefore, it

chaperons FUS from the cytoplasm to the nucleus. NIRs can reverse aberrant phase separation and aggregation of

proteins with prion-like domains, including FUS and TDP-43, to mitigate neurodegeneration in vivo .

R521C and P525L are two common FUS mutations associated with ALS. FUS-R521C causes DNA damage and RNA

splicing defects . It colocalizes with stress granules, significantly increasing SG assembly and persistence . FUS-

R521C-positive SGs were colocalized to LC3-positive autophagosomes accumulating in autophagy-deficient neurons,

suggesting that autophagy is involved in the clearance of FUS mutants . P525L FUS mutation causes early-onset of

ALS . P525L-positive SGs are more intense and larger than the WT. The PI3K/AKT/mTOR pathway inhibition increases

autophagy by reducing FUS recruitment into SGs and reduces abnormal SGs linked to P525L FUS . Accumulation of

ubiquitinated proteins and autophagy receptor p62 was detected in neuronal cells with ALS-associated FUS mutation due

to impaired autophagy . However, overexpression of Rab1 rescued these defects, suggesting that Rab1 has a

protective role in ALS .
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