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Endothelial Dysfunction is a condition of altered metabolism and function of endothelium inducing vascular injury

and defective repair.

metformin,endothelial dysfunction

| 1. Endothelial Dysfunction

Functionally, ED can be defined as a reduced bioavailability of NO, which affects the impaired response to an

endothelium-dependent vasodilator such as acetylcholine.

Endothelium-derived NO not only keeps blood flow, though it also acts as a negative modulator of platelet
aggregation, pro-inflammatory gene expression, ICAM-1 (intercellular adhesion molecule 1) and VCAM-1 (vascular
cell adhesion molecule 1) production, E-selectin expression, ET-1 synthesis, VSMC proliferation, and lipoprotein
oxidation W. Thus, ED is characterized by a series of features which goes beyond the hemodynamic dysregulation,
including excess production of reactive oxygen species (ROS), enhanced expression of adhesion molecules and
inflammatory mediators @, and increased permeability of vascular endothelium. All of these promote both

beginning and progression of atherogenesis [EI4],

ED predictive role on the cardiovascular risk has been largely documented in clinical studies by non-
invasive, semi-invasive and invasive techniques measuring ED in humans in situ Bl Besides ED
functional measures, circulating levels of adhesion molecules and proinflammatory cytokines have
also been used as surrogate markers of endothelial activation and cardiovascular risk .

| 2. Endothelial Dysfunction in Diabetes

The literature extensively supports ED as an important risk factor for the development of T2DM cardiovascular

complications [,

Based on a state of insulin resistance (IR), the interaction of three pathological conditions frequently associated
with diabetes (hypertension, dyslipidemia and hyperglycemia), plays a pivotal role in the pathogenesis of the
atherosclerotic process . In this scenario hyperglycemia, playing a key role in any complication of diabetes 19, is

a leading actor.
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Acute hyperglycemia, achieved by intra-arterial infusion of dextrose, has been documented to impair endothelium-
dependent vasodilation in healthy humans 1. Likewise, the acute increase in plasma glucose after administration
of oral glucose tolerance test (OGTT) determines, within a 1-2 h time period, a reduction of flow-mediated
vasodilation in non-diabetic subjects, with a higher response in individuals with impaired glucose tolerance (IGT),
and even more in those with diabetes 2. A similar harmful effect is likely expected from prolonged and repeated
post-prandial hyperglycemias, as it may routinely happen in T2DM. These hyperglycemic spikes may exert a
dramatic and long-lasting epigenetic “memory” effect on the endothelial function, as reported in ECs cultured in
high glucose and then restored to normoglycemia 28l which suggests transient hyperglycemia as a potential
HbA1lc—independent risk factor for diabetic complications 24, A recent study in small mesenteric arteries from
healthy and diabetic db/db mice has demonstrated that both acute and chronic exposure to high glucose interfere

with local and conducted vasodilation in the resistance vasculature mediated by EDH 121,

Strong accumulating evidence suggests oxidative stress, defined as increased formation of ROS, reactive nitrogen
species (RNS), and/or decreased antioxidant potentials, as the cornerstone of ED in the development of diabetic
complications 28!, This condition triggers the production of pro-inflammatory cytokines and adhesion molecules
responsible of intimal lesions formation 28] |ndirectly, some downstream processes (e.g., insulin resistance,
formation of oxidized-low density lipoprotein (ox-LDL), inhibition of AMP-protein kinase (AMPK), and adiponectin)
contribute to inflammation during the progression of atherosclerosis 2. In turn, inflammation enhances ROS
production, with a consequent arise of a variety of vicious cycles which intertwine each other, thus featuring the
pathogenic complexity of the diabetes-accelerated atherosclerosis 292, Moreover, endothelial damage increases
albuminuria, both an independent and strong marker of CV risk (22231, The mechanisms by which hyperglycemia

induces endothelial dysfunction are summarized in Figure 1 and are described in detail in the following paragraphs.
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Figure 1. Main mechanisms of high glucose-induced endothelial dysfunction (direct arrows indicate the direction of

the pathway, whilst double arrow stands for bidirectional pathway).

2.1. Increased ROS Production

Oxidative stress plays a major role in the pathophysiology of diabetic vascular disease 1224 Such a role is
consistent with large evidence that increased concentrations of glucose in cultured endothelial cells induce an
overproduction of ROS, with the subsequent activation of intracellular signal transduction pathways leading to ED
(23126]  High glucose concentration has been well established to cause endothelial cell damage by both an

overproduction of ROS in mitochondria and by multiple biochemical pathways.

2.1.1. Uncoupling of eNOS

The deep reduction in endothelium-dependent vasodilatation associated with T2DM can be linked to changes in
eNOS phosphorylation and desensitization induced by signal transduction pathways activated by ROS surplus. As

an example, oxidative stress can activate the hexosamine biosynthetic pathway under diabetic and hyperglycemic
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conditions. This activation is further accompanied by an increase in O-linked N-acetylglucosamine modification of

eNOS and a decrease in O-linked serine phosphorylation at residue 1177 27,

The functional disturbance of the enzyme results in the production of superoxide anion (O,™) rather than NO, a

phenomenon named eNOS uncoupling [281129],

The ability of eNOS to generate NO can be disabled by the deficiency of tetrahydrobiopterin (BH4), an essential
enzyme co-factor, which transforms eNOS into an oxidant-producing enzyme of O, BUBl ROS may induce
oxidative changes of BH4 to dihydrobiopterin (BH2), a BH4 competing compound ineffective as eNOS co-factor.
BH2/BH4 competition results in the dissociation of dimeric eNOS to the monomeric form, which acts through its
oxygenase domain as an NADPH oxidase, further enhancing ROS generation, in a harmful perpetuation of a
vicious circle [LI3283]34] |nterestingly, the hyperglycemia-induced ED in normal subjects may be prevented by pre-
treatment with the BH4 active isomer, 6R-BH4, whilst not by its inactive stereoisomer, 6S-BH4 32, |n addition, the
oral treatment with sepiapterin, a stable precursor of BH4, reduced oxidative stress and improved acetylcholine-

mediated endothelium-dependent vasodilation in small mesenteric resistance arteries from db/db obese diabetic
mice (28],

GTP cyclohydrolase | (GTPCH 1) is the first enzyme in the BH4 biosynthetic pathway, constitutively expressed in
endothelial cells and critical for the maintenance of NO synthesis 7. Studies in HUVECs exposed to high glucose
and in streptozotocin-injected diabetic mice have found that hyperglycemia may trigger BH4 deficiency by
increasing 26S proteasome-mediated degradation of GTPCH | 28, This degradation could be either prevented or

improved by AMPK overexpression or activation 22,

NO derived from dimeric eNOS and O, from monomeric eNOS induces the formation of peroxynitrite (ONOO™).
This may facilitate the release of zinc from the zinc-thiolate cluster of eNOS, which is useful to maintain the dimeric
structure of the enzyme, thus resulting in a further enhancement of eNOS uncoupling. Since loss of zinc and eNOS
uncoupling activity have been both observed in ECs cells exposed to elevated glucose and in tissues of a diabetic

mice model, we may hypothesize a significance of this process under in vivo conditions in diabetes 149,

The functions of many proteins may be affected by increased oxidant levels. As an example, a characteristic
reaction of ONOO™ is the nitration of protein-bound tyrosine residues to generate 3-nitrotyrosine—positive proteins
4l Some researchers have suggested that an increased nitration of PGI, synthase (PGIS), more likely via
dysfunctional eNOS, may characterize the diabetic disease. Such a hypothesis stands on observations that
exposure of isolated bovine coronary arteries to high glucose switched angiotensin ll—-stimulated PGl,-dependent
relaxation into a persistent vasoconstriction 2. As well, a significant suppression of PGIS activity, along with

increased O, and PGIS-nitration, was also observed in aortas of streptozotocin-treated diabetic mice 42,
2.1.2. Mitochondrial Dysfunction

The mitochondrial electron transport chain (ETC) is the primary source of hyperglycemia-induced ROS production

via a greater oxygen use, increased redox potential and shift of O, transport towards the respiratory chain complex
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I| (8201 Other mechanisms of mitochondrial dysfunction include increased NADH/FADH2 ratio 3! and

mitochondrial fission, which triggers an accumulation of fragmented mitochondria with impaired ETC activity [44].
2.1.3. Activation of the Polyol Pathway

Increased intracellular glucose levels overload ETC and are shunted into alternative pathways, in turn generating
ROS. In the polyol pathway, accounting for >30% of glucose metabolism during hyperglycemia 22! glucose is
converted by NADPH-dependent aldose-reductase to the sugar alcohol sorbitol, and sorbitol to fructose by sorbitol-
dehydrogenase. The oxidative stress generated by these reactions depends on the consumption of NADPH, a
cofactor required to regenerate the ROS scavenger glutathione (GSH), and on NAD+ reduction to NADH, which is
subsequently oxidized by NADH oxidase, with consequent production of superoxide ions 8. Aldose-reductase has

been indeed implied in the increased expression of inflammatory cytokines “Z[48],

2.1.4. Generation of Advanced Glycation End-Products (AGEs)

In conditions of hyperglycemia, the nonenzymatic fragmentation of the glycolytic intermediate triose phosphate
produces methylglyoxal, precursor of the majority of AGE products formed by a nonenzymatic reaction of either

ketones or aldehydes and the amino groups of proteins, during which large amounts of ROS are generated [18],

AGEs can interact with two types of cell surface receptors, scavengers involved in AGE removal and receptors for
AGE (RAGES), which initiate detrimental cellular signals, promoting inflammation and atherogenesis 2914950 Ag
an example, AGEs dose-dependently activate oxidative stress-mediated P38 activation of mitogen-activated
protein kinase (MAPK) signaling in endothelial cells, which enhances NO synthesis inhibition by AGEs (1],

Both AGEs and methylglyoxal also promote the expression of RAGEs ligands. In particular, oxidized AGEs activate
RAGEs to stimulate NADPH oxidase (NOX) 52 another important source of ROS production. NOX, which in
healthy state determines ROS production, in pathological conditions may be hyper-expressed and hyperactive, as
observed in cultured mice microvascular endothelial cells (MMECs) and human umbilical artery endothelial cells
(HUAECS) exposed to high glucose B34l Cells exposed to glucose fluctuations produce higher levels of NOX-
derived ROS as compared to cells steadily exposed to high glucose, thus indicating the detrimental effect on
vascular health of acute glycemic variations 23,

2.1.5. Activation of Protein Kinase C (PKC)

PKC is a serine/threonine related protein kinase acting in a wide variety of biological systems and regulating cell
growth and proliferation, senescence, and apoptosis. The enzyme, once activated, induces many atherogenic
processes, like ROS overproduction, endothelial dysfunction, increased vascular permeability, and inhibited
angiogenesis (241561,

In particular, NOX PKC-dependent activation is considered among the major sources of high glucose-induced ROS
production, even more than mitochondrion BZI58],

https://encyclopedia.pub/entry/6094 5/13



Endothelial Dysfunction in Diabetic Subjects | Encyclopedia.pub

In either a hyperglycemic or diabetic environment, PKC is activated by oxidative stress and AGEs and by
diacylglycerol (DAG), whose levels increase in endothelial cells due to the shunting of glycolytic intermediates to
dihydroxyacetone phosphate B8IE2 DAG-PKC is among the several cellular pathways activating when oxidative
stress causes DNA fragmentation and stimulation of the DNA repair enzyme, nuclear poly ADP ribose polymerase
(PARP). This enzyme inhibits the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), shunting early glycolytic

intermediates into pathogenic signaling pathways, including AGE, polyol, DAG-PKC, and hexosamine pathways
L8],

2.2. Endothelial Apoptosis and Senescence

Endothelial cell apoptosis and senescence are pivotal processes for the development of atherosclerosis, due to

their activation by a plethora of pathways sharing the common pathophysiological mechanism of oxidative stress
[60][61][62]

Studies on cultured ECs have shown that the promotion of senescence features (e.g., shortening of telomere
length, elevated DNA damage, increase genomic instability and growth arrest) can be modulated by two factors
intrinsically related to diabetes, high glucose 8 and AGE products €4, thus enhancing the intracellular levels of
oxidative stress [63I68167] The implied cellular signals are diverse. As observed in high glucose exposed umbilical
vein endothelial cells (HUVECSs), Bax protein expression increases in the absence of Bcl-2 modifications,
producing an elevated Bax/Bcl-2 ratio which activates the cleavage of procaspase-3 into active caspase-3, a
crucial mediator of apoptosis 8. As well, also the high-glucose induced NF-kB-dependent activation of c-Jun N-

terminal kinase (JNK) and ROS-dependent Akt dephosphorylation may be involved 69,

Intriguingly, carbonic anhydrase, overexpressed in endothelial cells of diabetic ischemic heart, determines

endothelial cell apoptosis in vitro, thus playing a key role in the remodeling process 9,

2.3. Other Pathogenetic Mechanisms of Vascular Dysfunction

A dysregulation of microRNAs (miRNAs), small non-coding RNAs, may contribute to the progression of
atherosclerosis and diabetes-induced vascular dysfunction. As an example, a reduction in miRNA-126 levels has
been associated with an increased leucocyte adherence to ECs and impairment of peripheral angiogenesis in
T2DM @I, Moreover, miR-29¢c and miR-204 were significantly dysregulated in atherosclerotic plaques from patients
with DM [Z2],

T2DM has been proven as characterized by an imbalance of gut microbiota, which can directly promote
atherogenesis by oxidative stress, inflammation, and changes in some metabolites, even though the bacteria

possibly associated with progression of diabetes-accelerated atherosclerosis have not been identified yet 22,
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