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Metabolic- (dysfunction) associated fatty liver disease (MAFLD) represents the predominant hepatopathy and one
of the most important systemic, metabolic-related disorders all over the world associated with severe medical and
socio-economic repercussions due to its growing prevalence, clinical course (steatohepatitis and/or hepatocellular-

carcinoma), and related extra-hepatic comorbidities.

metabolic (dysfunction) associated fatty liver disease nutrigenomics nutrigenetics diet

trained immunity precision medicine

| 1. Introduction

Non-alcoholic fatty liver disease (NAFLD) represents one of the most important metabolic-related disorders of the
21st century and the leading cause of chronic liver disease and liver transplantation worldwide &I, It includes a wide
spectrum of conditions ranging from simple steatosis to steatohepatitis (NASH), characterized by the histologic
appearance of inflammation and fibrosis, which act as driving factors to fuel the disease progression and

complications onset [,

Currently, NAFLD is considered the hepatic manifestation of metabolic syndrome (MS) &l and recently, an expert
consensus established that metabolic- (dysfunction) associated fatty liver disease (MAFLD) represents the more

adequate denomination, revealing its larger and deeper nature as systemic disorder 4! (Figure 1).
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Figure 1. NAFLD: a metabolic systemic disease. The modern approach considers NAFLD as a metabolic,
systemic disease characterized by several extra-hepatic manifestations mostly linked by a status of insulin
resistance (IR). EDCs: Endocrine disrupting compounds; IR: Insulin resistance; MAFLD: metabolic (dysfunction)
associated fatty liver disease; NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis; HCC:
Hepatocellular carcinoma; OSA: Obstructive sleep apnea; PCOS: Polycystic ovarian syndrome; T2DM: Type 2

Diabetes Mellitus.

Alarmingly, as the diffusion of MS-related conditions continues to increase and the obesity pandemic spreads
irrepressibly, MAFLD prevalence, in turn, seems to rise exponentially 2. The worldwide prevalence ranges from
6% to 35%, with higher levels in the industrialized countries (the Middle East 32%, South America 31%, United
States 24%, and Europe 23%) and lower levels in the underdeveloped ones (14%) . Moreover, future
perspectives appear decidedly not encouraging, expecting prevalence to reach about 100 million in the United
States alone by 2030 [,

The numbers of the MAFLD spread worldwide raise several important concerns principally due to the very complex
and still not fully understood pathogenesis. It gives to the disease an inherent difficulty to support the burden of its

optimal medical and social management.
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Pathogenetically MAFLD represents a multifactorial disease in which various elements can simultaneously
contribute to the genesis and affect natural history, contributing to make its manifestation from patient to patient
hugely different 8. The genome-wide association studies (GWAS) shed light on the genetic susceptibility of the
population to MAFLD onset and evolution, identifying several single nucleotide polymorphisms (SNPs), like
phospholipase domain-containing protein-3 (PNPLA3) rs738409, the transmembrane 6 superfamily member 2
protein (TM6SF2) rs58542926, and membrane-bound O-acyltransferase domain containing 7 (MBOAT7) rs641738,
as crucial in this scenario Bl At the same time, the contemporary involvement of several environmental factors
like sedentary life, unhealthy diet regimens promoting insulin resistance (IR), and gut dysbiosis, together with some

immune disturbances, have been accepted by the scientific community as “tiles of MAFLD pathogenetic mosaic” &
(20J142] (Figure 1).

To date, no specific medications for MAFLD treatment exist B3l hence, given its demonstrated capability to
induce huge improvement in IR and liver damage, lifestyle modification remains the most valid and accepted
recommendation 41, This approach classically rests on three enchained pivots: regular physical exercise, weight
loss, and healthy diet 28, Regarding the latter, the scientific evidence suggests the possibility that a regimen
characterized by the main consumption of plant-based food, fish, and white meat could contribute significantly to
the reduction of several chronic diseases’ occurrence, including MS components and thus MAFLD [6I718] These
principles constitute the paradigm of the well-known Mediterranean diet (MD), which, based on the antioxidant and
anti-inflammatory properties of the recommended food, currently represents the nutritional gold standard of

preventive medicine 12,

However, the different kinds of therapeutic outcomes potentially obtained from this dietary regimen induced the
scientific community to focus attention on the identification of the factors involved in determining the dietary
therapeutic effect, hypothesizing a mutual relationship between diet and genetics 13, Recent findings suggested
nutrition’s capability, by acting on the individual genetic background and modifying the specific epigenetic
expression as well, to influence NAFLD patients’ clinical severity and response to the treatment 22, The study of
the interaction between nutrients and inherited factors constitutes the central aim of emerging and promising lines

of research known as nutrigenetics and nutrigenomics 211,

Globally, the main scope of these research fields is strictly linked in a very complex scientific network with other
disciplines, such as genomics, transcriptomics, proteomics, metabolomics, and system biology, configuring the
“Omics-approach” to the disease that seems to be the key for the full comprehension of MAFLD pathogenesis and
evolution 2122 (Figure 2).
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Figure 2. Nutrigenomics and nutrigenetics: two sides of the same medal with several linked approaches. Genome
influences the responsiveness to nutrients (nutrigenetics’ field); at the same time, nutrition can also modify gene
expression involving epigenetic mechanisms (nutrigenomics’ field). Nutrigenomics investigates the effects deriving
from the interaction between the nutritional environment and inherited factors. Given the complexity of the
scenario, nutrigenomics quests include several approaches involving many other disciplines. Nutritional factors and
genetic ones influence each other: on one side, nutrients affect DNA metabolism, gene expression, and genetic
variability; on the other side, genetic variants (as SNPs), by determining specific individual genotype, influence
dietary habits. In turn, nutrigenetics could also be influenced by epigenetics. Altogether, these mechanisms

contribute to determinate the status of health or a condition disease. SNPs, Single Nucleotide Polymorphisms.

2. Genetics and Epigenetics: An Overview on MAFLD
Genetic Background

In MAFLD context, heritability seems to play a pivotal role as suggested clearly just considering the higher disease
risk of offspring in case of positive family history for MAFLD, particularly when both parents are affected [23124],
Furthermore, the ethnic susceptibility represents another overwhelming proof. Different ethnicities, in fact, show
different propensity towards disease development and progression [23l28] |nterestingly, besides the inter-ethnic
one, growing evidence reveals also an inter-individual variability. Therefore, people belonging to the same ethnicity
have different possibilities to develop MAFLD, and this appears strictly linked to certain genetic variants as well as

genetic expressions able to influence its onset and evolution (2711281291,

2.1. Most Common Genetic Determinants of MAFLD
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A long list of genetic inter-individual variants has been provided by GWAS in this context; it embraces several
genes known as genetic determinants of MAFLD, whose expression is involved in the formation of lipid droplets

and regulation of oxidative stress, inflammation, fibrogenesis, and many other metabolic pathways 2289 (Taple

1).

Table 1. Main genetic determinants of NAFLD.

Variants/SNPs/Protein

Relative

Gene Variants EffectsIAg;somatlon
with
Disruption of triglycerides and
phospholipids turnover and
remodelling: increased hepatic fat
rs738409 accumulation;
PNPLAS (1148M) Disruption of retinol storage in
HSCs leading to higher risk of
) inflammation, fibrosis, and HCC
Major and most .
. progression.
common genetic
detel\rﬂrr';\lgilgts of Higher risk of MAFLD
MBOAT 7 rs641738 development, inflammation,
fibrosis, and HCC progression.
Favouring liver fat
TMESE2 (S58542026 accumulation;Protection against
the development of
cardiovascular diseases.
GCKR 1$1260326 Increased de novo IFpogeneS|_s
and worsened hepatic steatosis.
222;2;;(;?5 Reduction of de novo lipogenesis
. S PPP1R3B rs4841132 and thus protection from hepatic
involved in lipid .
. fat accumulation.
metabolism
APOB Several and different Reduced VLDL export from
hepatocytes.
Other g_enetlc sop2 1s4880 Higher oxidative st_ress _amd more
determinants advanced fibrosis.
involved in
oxidative stress IR worsening, increased
imbalance UCP3 rs1800849 adiponectin levels, and NASH
development.
UCP2 1695366 nghe_r msuhp ser_msmvr[y and
protection against liver damage.
MARC1 A165T Lower hepatic fat accumulation

and decreased levels of several
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. . Relative
Gene VarlantslS!\IPsIProteln Effects/Association
Variants 2
with

biomarkers of liver disease.

HFE rs1800562 (C282Y) LTI e
oxidative stress imbalance.

TLR4 D299G and T399I Protectlop against fibrosis (in

animal models).
IFNL4 rs368234815 Induction of severe inflammation.

Promotes inflammation and
IFN/IL-28 rs12979860 fibrosis (it is predictive for
advanced stage of the disease).

Other genetic
determinants
involved in
inflammation and

fibrosis PCSK7 rs236918

Liver damage and altered
fibrogenesis association.

MERTK rs4374383 Protection against fibrosis.

Reduced risk of NASH (but not

HSD17B13 rs72613567 .
steatosis).

However, more robust and reproducible associations seem to exist, above all, for PNPLA3, MBOAT7, and TM6SF2

variants that currently are considered the main genetic MAFLD determinants (81,

The rs738409 SNP of the PNPLA3 gene (or Adiponutrin), encoding for the 1148M protein variant, showed heavy
impact on disease susceptibility. This variant has been associated with higher hepatic fat content in an IR-
independent manner, as demonstrated by Romeo et al. B, In details, the role of IR in the light of the current
scientific knowledge regarding this purpose seems to be extremely complex and, from a certain point of view, still
not fully understood. In fact, the PNPLA3 gene encodes for the homonymous transmembrane protein localized on
the endoplasmic reticulum B2 mainly expressed in hepatocytes and adipose tissue and exhibiting triglycerides
(TG) hydrolase activity regulated by glucose and insulin B223) |n case of IR and obesity, both conditions featured
by high insulin levels, PNPLA3 expression is induced, and the protein is placed and accumulated on the surface of

lipid droplets where it is not catalytically active, disrupting TG and phospholipids turnover and remodelling B4,

PNPLAS is also involved in the release of the storage form of retinol, known as retinyl-palmitate, in hepatic stellate
cells (HSCs) [35136] pye to the involvement of retinyl-palmitate in the regulation of cellular fat metabolism and
HSCs activation, its retention caused by the 1148M genetic variant determines, consequently, the activation of pro-
inflammatory and pro-fibrotic responses [S5I37] - About that, growing evidence in animal and clinical experimental
models suggests the 1148M genetic variant relationship with all the steps of the diseases’ natural history, from

simple steatosis to NASH, cirrhosis, and hepatocellular carcinoma (HCC) development 381391 Moreover, this SNP
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appears to be involved as the key driver in chronic kidney disease (CKD) development and is currently recognized

as an established marker of higher cardiovascular risk in MAFLD 49,

MBOAT7 is a gene encoding for a membrane-bound enzyme whose main function is the incorporation of
arachidonic acid (AA) and other unsaturated fatty acids (UFAs) in the phosphatidylinositol (PI) molecule by the
Lands cycle (a series of phospholipid-remodelling reactions by which acyl-chains become trans acylated) “1l. In
the presence of the rs641738 variant, the expression of the encoded enzyme decreases together with the hepatic
levels of PI containing AA and causes a disruption of several cellular pathways regulating TG metabolism,

inflammation, fibrosis, and cellular proliferation as well [42431[44]

The TM6SF2 gene is responsible for the production of a protein mainly localized in the endoplasmic reticulum and
Golgi apparatus, involved in the regulation of the hepatic triglyceride secretion 43146l The rs58542926 C>T
encoding for the E167K variant of this gene is involved in MAFLD development and worsening of histological
picture, impairing inflammation, ballooning, and fibrosis, as demonstrated by Liu et al. 42471 On the other side, this
SNP seems to confer protection from the cardiovascular disease risk through the reduction of lipid secretion and

very-low-density lipoproteins (VLDL) synthesis, designing a very complex biologic role that still remains to be fully
clarified [481421(50]

Besides PNPLA3, MBOAT7, and TM6SF2 SNPs, other genetic variants appear potentially involved in this scenario.
Strong scientific evidence exists for the glucokinase regulator (GCKR) common missense variants rs1260326
encoding for the P446L protein 1. The common missense variant rs1260326 disrupts GCKR function, making it
unable to inhibit the glucokinase and, consequently, activating hepatic glucose uptake and glycolysis. These
phenomena lead to the generation of acetyl-CoA cellular overload and de novo lipogenesis (DNL) B,
Contrariwise, the protein phosphatase 1 regulatory subunit 3B (PPP1R3B) rs4841132 variant, through the
reduction of lipogenesis and the increase of glycogen synthesis, seems to protect against hepatic fat accumulation
(521 Besides the aforementioned one involved in steatosis development, other genetic polymorphisms have been

associated with the disease progression.

As known, reactive oxygen species (ROS) overproduction derived from free fatty acids (FFAs) overload in
mitochondria secondary to IR and consequent mitochondrial dysfunction, represent critical events in MAFLD
worsening 23, In this regard, some studies highlighted the association of polymorphism rs4880 of Superoxide
dismutase 2 (SOD 2) with higher oxidative stress levels, inflammation, and more advanced fibrosis 2455 |n line
with this, the uncoupling protein 3 (UCP3) rs1800849, uncoupling protein 2 (UCP2) rs695366, homeostatic iron
regulator (HFE) C282Y rs1800562, and a rare missense variant (A165T) in mitochondrial amidoxime reducing
component 1 (MARC1) represent other new interesting topics B8 UCP3 is a mitochondrial anion carrier
selectively expressed in skeletal muscle involved in the modulation of energy, lipid homeostasis, and
thermogenesis by facilitating the proton leak of the mitochondrial inner membrane and uncoupling the oxidative
phosphorylation 8. Interestingly, a Spanish study conducted on a cohort of overweight patients revealed the

association of UCP3 rs1800849 variant with IR, increased adiponectin levels, and NASH 59 On the contrary, the
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presence of the UCP2 rs695366 variant has been linked to higher gene expression, insulin sensitivity, and

protection from liver damage 69,

Other rare genetic variants were demonstrated related to MAFLD clinical context as mainly involved in the disease
progression instead of its development: the rs236918 genetic variant in proprotein convertase subtilisin/Kexin type
7 (PCSK?7) 81 or protecting from the disease and complication onset: the loss of function in HSD17B13 gene due
to rs72613567 variant 621631,

However, one of the most intriguing questions is how far we are to apply in the routine clinical practice the
knowledge derived from GWAS studies. This question could be interpreted from some different point of views on
MAFLD clinical picture: predictive, prognostic, and therapeutic ones 281, On this line, it is necessary to highlight the
lack of scientific agreement regarding the best methodological choice to evaluate the utility of genetic variant risk
estimates 64l Considering the PNPLA3 1148M variant, it has great power in the prediction of the disease, which
was highlighted by several clinical trials in which its role in disease appearance was totally demonstrated
independent from the other classical risk factors [24l63] However, its pertinence as a heritable factor for NAFLD
development was not demonstrated as brilliant as the latter purpose and, for this reason, the actual clinical
management guidelines of the European Association for the Study of the Liver do not recommend its routine
assessment for NAFLD-related liver damage evaluation 88, In this regard, because of the lack of sufficient
scientific proof to support the use of a single SNP in the prediction of the disease risk, the recent scientific literature
has focused attention on the possible applicability of polygenic risk scores (PRSs) for this purpose 4l This
acquires even more relevance considering the accuracy of PRS based on well-established SNP and commonly
recognized risk factors for the disease development in NAFLD risk prediction 768 The use of PRS in a cross-
sectional study on NAFLD was demonstrated able to induce an improvement of risk prediction in about 20% of
patients. Moreover, recently, PNPLA3-TM6SF2-GCKR-MBOAT7 variants combined in a hepatic fat PRS (PRS-
HFC) and adjusted for HSD17B13 (PRS-5) were demonstrated as able to predict HCC more efficiently than single
variants assessment and that the association between PRS and HCC, mediated by severe fibrosis, was
independent from the latter in clinically relevant subgroups and in those without advanced stages fibrosis [,
Despite that the emerging research topic could have huge scientific impact on future clinical management, the
amount of scientific evidence currently remains the most important concern to recommend their routine use.
Moreover, regarding the prediction of long-term outcome, independently from the baseline staging of the disease,
nowadays, it is not possible to state scientifically coherent conclusions, at least until the publication of data from

long-term prospective studies.

The possibility of MAFLD therapeutic outcome prediction in the era of the patients-tailored approach assumes a
fascinating aura in the light of some research trials on new therapeutic agents for disease treatment 9. This novel
research line could give the possibility to interpret better the usefulness of a wide range of already known drugs
and newly developed ones as well. The WELCOME trial evaluated the response to 4 x 1000-mg capsules of 460
mg eicosapentaenoic acid and 380 mg docosahexaenoic acid administration for 15-18 months on liver fat content

and fibrosis in NAFLD patients 2. At the end of treatment, those patients carrying the 148l/I and 148I/M genotype
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showed a decrease of liver fat percentage (148l/1: =7.05%, 148I/M: —=7.30%) whereas the 148M/M group showed a
moderate increase (2.75%) (71,

Even if for some of the identified genes more powerful scientific evidences are still missing and the results of the
different studies appear sometimes controversial as well, there is no doubt in considering this field one of the most

promising topics of the recent MAFLD research.

2.2. Main Epigenetic Mechanisms of MAFLD

As part of the complex genetic background sustaining MAFLD, several epigenetic phenomena, influencing different
levels of gene expression regulation, seem to be potentially involved in pathogenesis and clinical history. The
mechanisms described encompass DNA methylation, histone modifications, and microRNAs (miRNAs) activity on
specific targets (2], In this context, the development of a characteristic methylation pattern could be critical and fuel
the disease progression 28], Kitamoto et al. compared the levels of DNA methylation of certain CpG islands as
CpG99 (which resides in the regulatory region of PNPLA3) and CpG26 (which resides in that of PARVB variant 1)
in the livers of patients with mild (fibrosis stages 0 and 1) or advanced (fibrosis stages 2 to 4) steatosis by
performing targeted-bisulfite sequencing 4. Relevantly, in the livers of patients with advanced disease, CpG26
resulted markedly hypomethylated while CpG99 was substantially hypermethylated, suggesting the
hypomethylation of CpG26 and the hypermethylation of CpG99 as potential contributors to the severity of fibrosis in
patients with MAFLD 4. Moreover, in individuals affected by severe steatosis compared to mild ones, lower DNA
methylation levels characterized specific CpG islands of noted pro-fibrotic genes, such as transforming growth
factor- B(TGF-B), collagen 1A1, platelet-derived growth factor- a(PDGF-a), and others [ZSIlZ8 On the contrary,
hypermethylation status occurred for certain CpG islands in various anti-steatotic and anti-fibrotic genes, such as
ApoB and peroxisome proliferator-activated receptor (PPAR)-a 2778 The |oss of PPAR-a functioning seems
extremely important because it regulates cytokine production, reducing the expression of pro-inflammatory ones,
and, on the other hand, it modulates the proteins involved in the fatty acid binding activity, taking part in the

regulation of lipogenesis during the oxidation Az,

In this sense, a large number of liver DNA methylation alterations widely affecting disease onset and worsening by
promoting inflammation and fibrosis has been related to certain metabolic features in terms of insulin, amino acids,
and lipids serum levels. An interesting analysis of the DNA methylation pattern performed on the liver biopsies
obtained from 95 obese individuals (34 individuals showing normal liver phenotype, 35 simple steatosis, and 26
steatohepatitis), identified 1292 CpG sites representing 677 unique genes differentially methylated in the livers of
individuals with advanced disease (i.e., steatohepatitis) 2. Focusing on the top-ranking 30 and another 37 CpG
sites mapped to genes enriched in pathways of metabolism and cancer all together, the authors revealed 59
steatohepatitis-associated CpG sites correlating with fasting insulin levels independently of age, fasting glucose, or

diabetes mellitus type 2 B9,

In addition, in a recent study on 194 obese patients (79 with liver histology classifiable as normal liver, 40 as simple

steatosis, and 45 as steatohepatitis) aiming to assess serum aromatic and branched-chain amino acids levels
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association with steatohepatitis, the tryptophan resulted significantly higher in those with advanced disease
compared to those with simple steatosis [81l. Relevantly, these amino acid serum levels result were associated with
liver DNA methylation of CpG sites known to be differentially methylated in individuals with steatohepatitis and
were correlated positively with serum total and low-density lipoprotein (LDL) cholesterol and, accordingly, with liver

low-density lipoprotein receptor (LDL-R) at mRNA-expression level 81,

Histone modifications represent another epigenetic phenomenon potentially related to different metabolic
dysfunctions 2. The disruption of circadian rhythm of histone acetylation regulated by histone deacetylases
(HDCAB3), implicated in the regulation of the circadian rhythm of hepatic lipogenesis €2, may alter hepatic lipid
metabolism leading to IR and obesity B384 |n particular, a group of deacetylates, known as silent information
regulator 2 proteins (Sirtuins), may exert a key role in MAFLD development B4l according to growing evidence
revealing their downregulation in animals and in vitro models (4185 |n mice, in fact, liver-specific deletion of SIRT1
by impairing of PPAR-a signalling and decreasing fatty acids (FAs) beta-oxidation, leads to IR and related
inflammation B2, Relevantly, both the DNA methylation and histone modifications may also occur in mitochondrial
DNA (mt-DNA) [88],

This feature appears in line with the aforementioned mitochondrial dysfunction implicated in MAFLD pathogenesis.
Hypermethylation of mitochondrially encoded NADH ubiquinone oxidoreductase core subunit 6 (MT-ND6) was
demonstrated on liver biopsy samples from NASH patients compared with subjects affected by liver steatosis B,
In addition, the authors highlighted the association of MT-ND6 methylated/unmethylated DNA ratio with the NAFLD
activity score (NAS) [&7. In keeping, a more recent study by Pirola et al. revealed higher levels of MT-Cytochrome

B variance and mt-DNA damage in NASH patients compared to simple steatosis ones 8],

Regarding mt-DNA histone modifications, genetic polymorphism of SIRT3, a mitochondrial sirtuin pivotal for
guaranteeing mitochondrial integrity and metabolism during oxidative stress [€8 has been associated with the
development of MS in mice and humans as well as contributes to downregulate autophagy, leading to lipotoxicity in
hepatocytes and thus MAFLD worsening B220](91]

The role of epigenetics is not only limited to the DNA access variations being expressed also in post-transcriptional
steps acting by miRNAs, small non-coding single strand RNAs (ssRNAs) able to repress or degrade specific
MRNAs target, regulate several biological and pathological processes, and intervene in lipid metabolism and
inflammatory processes 22331 |n this context, one of the most relevant studied miRNAs is miRNA-122, identified
as a promising biomarker and drug target for MAFLD 24, Esau et al. firstly highlighted the key role of this miRNA in
the liver of high-fat diet (HFD) fed mice; after treatment with antisense oligonucleotides (ASO) inhibitors of miRNA-
122, a significant reduction of hepatic biosynthesis of FAs, an increased beta-oxidation, and a reduction of TG
accumulation were observed 23, Recent scientific evidence demonstrated through in vitro and animal models the
mMiRNA-122 suppressing role of SIRT1 expression via binding its 3’-untranslated region (UTR), enhancing

lipogenesis, and contributing, thus, to lipid accumulation 241,
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In contrast, miRNA-122 knockdown mitigated this consequence through the upregulation of SIRT1 and the
activation of the liver kinase B1 (LKB1)/adenosine monophosphate-activated protein kinase (AMPK) signalling
pathway [24]. Besides miRNA-122, other miRNAs could interfere with these processes 28 for instance, miRNA-
33a/b action on the target AMPK, by reducing AMPK expression, increases the levels of intrahepatic TG [©Z:
contrariwise, miRNA-33a/b inhibition promotes beta-oxidation of FAs and insulin sensitivity (9711981 However, the
role of mMiIRNAs was not only related to the induction of steatosis because of the proved effects on the progression
to inflammation and fibrosis 2. In this sense, miRNA-34a results highly expressed in MAFLD patients in a stage-
dependent manner (2001011021 O, the contrary, the expression levels of mMIRNA-451, able to downregulate nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-kB) and tumour necrosis factor—a(TNF-a) in vitro,

resulted significantly decreased in NASH patients 1921,

Altogether, these epigenetic mechanisms contribute to MAFLD inter-individual variability in terms of susceptibility
towards disease and its progression, influencing the clinical history of each patient. To improve MAFLD individual
prognosis, the future challenge is certainly represented by the application of these findings to the routine clinical
practice, through the identification of biomarkers and therapeutic targets usable for early diagnosis and
personalized therapies. In these terms, the above-presented findings highlight a suggestive relationship between
the occurrence of epigenetic phenomena modifying gene expression and metabolic dysfunctions (including, among
others, IR and high LDL serum levels). This feature appears widely relevant, representing an important food for
thought regarding potential nutrigenomics approaches considering certain nutrients’ capability to influence gene

expression, discussed as well in the next paragraph.
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