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DNA damage response and repair (DDR) genes are necessary to maintain the integrity of cell DNA. Alterations of these

mechanisms have been found in many cancer types, and may influence treatment outcomes as well as the prognosis of

cancer patients. Recently, several treatment strategies taking advance of the presence of DDR alterations are emerging in

oncology.
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1. Introduction

The dysfunction of DNA repair machinery ultimately leads to the accumulation of somatic mutations, increasing the risk of

developing cancer . Six main DNA repair pathways operate depending on the type of DNA damage. Single-stranded

breaks (SSBs) can lead to the activation of four different repair mechanisms based on the damage: base excision repair,

nucleotide excision repair, mismatch repair, and translesion synthesis. Damage involving both DNA strands (double-

stranded breaks) can activate two compensatory pathways: homologous recombination repair (HRR), an accurate system

that uses a complementary strand from a sister chromatid to reproduce the original DNA sequence, and non-homologous

end-joining, which is more error-prone as it utilizes no or limited homologous sequences to restore the damaged strand .

An increasing number of genes that help the DNA repair machinery to function have been identified, and the inherited

deficiency of several genes, such as BRCA1/2, ATM, and PALB2, are linked to the predisposition of developing PC .

In particular, germline or somatic mutations of BRCA1, BRCA2, PALB2, ATM, and CHEK2 have been reported in 20% of

PDAC, while a deficiency of HRR genes was documented in 15.4% of PC and ATM mutations in 9–18% of PC .

DDR deficiency is known to co-segregate with improved response to platinum derivatives consistently with the mechanism

of action of these agents. Moreover, deficient DDR machinery can enhance an immune response in multiple ways,

providing the rationale for the combination of DDR-targeting agents and immunotherapy . The number of antitumor

agents taking advantage of DDR deficiency is constantly expanding and many trials are ongoing (Table 1), hopefully to

provide increasing treatment possibilities for PC patients.

Table 1. Ongoing trials evaluating activity and efficacy of PARP inhibitors in PC (Clinicaltrials.gov last accessed 10 June

2021).

Target Tumor Setting Treatment Arms Phase Primary
Outcome

N of
Patients

clinicaltrial.gov
Identifier

PARP PC

Advanced, pretreated,
without germline BRCA1/2

mutations but with
BRCAness phenotype

olaparib II ORR 34 NCT02677038

PARP

AST Advanced, pretreated

(1) AZD6738

II ORR 68 NCT03682289
ATR (2) AZD6738 +

olaparib

PARP
AST Advanced, pretreated cediranib + olaparib II ORR 126 NCT02498613

VEGF
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Target Tumor Setting Treatment Arms Phase Primary
Outcome

N of
Patients

clinicaltrial.gov
Identifier

PARP PC Advanced, with BRCA1/2 or
PALB2 mutation

(1) veliparib +
gemcitabine

hydrochloride +
cisplatin

II
ORR

Dose-
finding

107 NCT01585805(2) gemcitabine
hydrochloride +

cisplatin

(3) veliparib

PARP PC Metastatic, untreated, with
HRD

rucaparib + nal-IRI,
leucovorin,
fluorouracil

II
ORR

110 NCT03337087
DLTs

PARP AST Advanced, pretreated, with
HRD rucaparib II ORR 220 NCT04171700

PARP PC
Advanced, pretreated, with
BRCA1/2, PALB2, CHEK2 or

ATM mutation
niraparib II PFS 32 NCT03601923

PARP PC Advanced, pretreated niraparib +
dostarlimab + RT II DCR 25 NCT04409002

PARP PC Advanced, pretreated, with
DDR genes alteration niraparib II ORR 18 NCT03553004

PARP PC
Advanced, following

platinum-based CT without
PD

(1) niraparib +
nivolumab

Ib/II PFS 84 NCT03404960
(2) niraparib +

ipilimumab

PARP PC

Resected, after completion
of (neo)adjuvant CT (+/−

RT), with BRCA1/2 or
PALB2 mutation

(1) olaparib (2)
placebo II RFS 152 NCT04858334

PARP
PC

metastatic, following
platinum-based CT without
PD, with BRCA1/2 mutation

(1) olaparib +
pembrolizumab (2)

olaparib
II PFS 88 NCT04548752

PD-1

PARP,
PD-1 PC

Metastatic, pretreated, with
BRCA1/2, PALB2, BARD1,

RAD51c/d mutation

niraparib +
dostarlimab II DCR 20 NCT04493060

PARP,
PD-1 PC

metastatic, untreated,
following low-dose CT with

gemcitabine, nab-
paclitaxel, capecitabine,
cisplatin, and irinotecan

(GAX-CI)

olaparib +
pembrolizumab II PFS 38 NCT04753879

PARP PC
Advanced, untreated, with

BRCA1/2 or PALB2
mutation

(1) fluzoparib +
mFOLFIRINOX

followed by
fluzoparib

maintenance Ib/II
DLTs
MTD
ORR

66 NCT04228601

(2) placebo +
mFOLFIRINOX

followed by placebo
maintenance

WEE1 PC Metastatic, untreated

(1) adavosertib (MK-
1775) + nab-paclitaxel

+ gemcitabine
I/II MTD

PFS 133 NCT02194829
(2) placebo + nab-

paclitaxel +
gemcitabine

RAD51 AST Advanced, any line CYT-0851 I/II DLTs
ORR 165 NCT03997968



2. PARP Inhibitors

Poly-ADP-ribose polymerase inhibitors (PARPis) take advantage of the concept of synthetic lethality, which is defined by

the combination of inactivating mutations in two or more different genes essential for cell integrity, inducing cell death .

The PARP-1 gene is involved in several phases of the DNA repair machinery, especially in preventing SSBs . Thus,

PARPis determine the accumulation of unrepaired SSBs, which are converted into DSBs during cell replication (Figure 1).

In this scenario, the concomitant presence of HRR deficiency, such as BRCA1/2 inactivating mutations, enhances a

predisposition to synthetic lethality .

Figure 1. Main transmembrane receptor and intracellular pathways evaluated as potential therapeutic targets in PC.

EGFR: epidermal growth factor receptor; HER-2: human epidermal growth factor receptor 2; NTRK: neurotrophic tyrosine

receptor kinase; PTCH1: 12-transmembrane patched protein 1; SMO: 7-transmembrane smoothened protein: RAS: rat

sarcoma; RAF: rapidly accelerated fibrosarcoma; MEK: mitogen-activated protein kinase; ERK: extracellular signal-

regulated kinase; JAK: Janus kinase; STAT: signal transducer and activator of transcription; PI3K: phosphoinositide-3-

kinase; mTOR: mechanistic target of rapamycin; Gli: 5-zinc-finger transcription factor; SSB: single-stranded break; DSB:

double-stranded break; PARP: poly ADP-ribose polymerase. Created with BioRender.com (accessed on 14 July 2021).

Following this, we describe the current knowledge and the incoming opportunities concerning PARP inhibition in PC.

2.1. Olaparib

At the time of this review, olaparib represents the only approved PARPi in PC. The phase II trial conducted by Kaufman et

al. evaluated olaparib monotherapy (400 mg twice daily) in patients with recurrent cancer that harbor germline BRCA1/2

mutations . Twenty-three patients with PC who received a prior treatment with gemcitabine were included in the study.

The objective response rate (ORR) was 21.7% (95% CI, 7.5 to 43.7), and stable disease (SD) lasting ≥8 weeks was

observed in 34.8% of patients. A promising median progression-free survival (PFS) of 4.6 months and overall survival

(OS) of 9.8 months were also documented. Olaparib approval in PC was obtained following the results of the randomized,

double-blind, placebo-controlled, phase III POLO trial. A total of 154 patients with metastatic PC and a germline mutation

of BRCA1/2 who did not progress during first-line platinum-based chemotherapy were randomized to receive olaparib

monotherapy (300 mg twice daily) or placebo as maintenance therapy . Median PFS was significantly prolonged in the

olaparib group (7.4 vs. 3.8 months; HR 0.53; CI 95% 0.35–0.82; p = 0.004), while median OS was similar between

groups. Notably, two studies evaluating the combination of olaparib and chemotherapy are discontinued due to severe

toxicity issues .

2.2. Veliparib

Veliparib is an oral PARPi with lower PARP trapping ability compared with Olaparib . A single arm, phase II trial

tested this agent at a dose of 400 mg twice daily in previously treated stage III/IV PC patients with a germline BRCA1/2 or

PALB2 mutation . Unfortunately, no tumor response was documented, but SD lasting ≥4 months was observed in 25%

of patients. The addition of veliparib (80 mg twice daily on days 1 to 12 every 3 weeks) to cisplatin, plus gemcitabine

chemotherapy (25 mg/m  and 600 mg/m , respectively, both on days 3 and 10), was recently evaluated in a two-arm,

phase II trial enrolling 50 patients with stage III/IV untreated PC and a germline BRCA1/2 or PALB2 mutation . Both
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arms demonstrated high antitumor activity, with a disease control rate (DCR) of 100% in the combination arm versus

78.3% in the chemotherapy alone arm (p = 0.02), although no significant difference in ORR was observed (74.1% vs.

65.2% in the triplet and doublet arm, respectively; p = 0.055). Conversely, a notable increase of hematologic toxicities was

reported in the combination arm. Veliparib was also tested, in addition to modified FOLFIRI, as a second-line treatment for

metastatic PC patients, showing no additional benefit among biomarker unselected patients .

2.3. Rucaparib

The single-arm phase II RUCAPANC study investigated efficacy and safety of the oral PARPi rucaparib (600 mg twice

daily) among 19 patients with pretreated locally advanced/metastatic PC harboring a germline or somatic BRCA1/2

mutation . Rucaparib demonstrated an acceptable toxicity profile and provided clinical benefits, as ORR was 15.8%

and DCR was 31.6%. Rucaparib (600 mg twice daily) was then investigated as maintenance monotherapy in a single-arm

phase II trial, enrolling patients with advanced pancreatic cancer and harboring a BRCA1/2 or PALB2 mutation but who

did not show PD following at least 4 months of platinum-based chemotherapy . Again, this agent showed encouraging

antitumor activity with a safe toxicity profile, as median PFS was 9.1 months, ORR was 36.8%, and 89.5% of patients

achieved DCR lasting ≥8 weeks.

2.4. Talazoparib

Talazoparib is a novel, potent oral PARPi. The two-part, dose-escalation, phase I trial by de Bono et al. tested this agent in

patients with advanced solid tumors and a germline BRCA1/2 mutation . Talazoparib showed a tolerable profile and

promising antitumor activity, as ORR was 20% among 20 patients with advanced PC.

Ongoing trials investigating the use of PARPis alone or combined with different agents for the treatment of advanced PC

patients are summarized in Table 1. These agents have demonstrated a synergistic effect with programmed death-

1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors in murine models, possibly due to PD-L1 upregulation in the tumor

microenvironment . Moreover, the addition of a MEK inhibitor to a PARPi and a PD-(L)1 inhibitor is currently under

evaluation to overcome RAS-mediated resistance to PARPis in RAS-mutant PC, which was reported in preclinical models

.

3. Further DDR Targeting Agents

PARPis represent only a small part of the wide scenario of DDR gene inhibition. The interest in DDR genes has risen in

recent years as an increasing number of specific agents targeting these pathways is in the testing or development phase.

The ataxia-telangiectasia mutated (ATM) gene plays a central role in DNA damage response and DSB repair, and its

germline mutation is known to produce a specific syndrome, as well as increasing the risk of developing several types of

cancer, including PC . Once the ATM signal is disrupted, the cell relies on downstream ATR and CHK1/2 pathways to

ensure DNA repair, arresting the cell cycle and preventing the DNA fork from collapsing. These functions make them two

possible targets in ATM-deficient tumors, which account for 9–18% of sporadic PC . Consistently, a sensitization of

ATM-mutated PC cell lines to PARP, ATR, and CHK1/2 inhibitors, alone or in combination with other agents, have been

demonstrated in preclinical studies . Considering these data, several ongoing clinical trials are evaluating the

potential of ATM, ATR, and CHK1 inhibitors in patients with PDAC (Table 1).

WEE1 regulates the G2 DNA damage checkpoint in concert with CHK1 during cell replication, which delays the

completion of mitosis of cells that suffer genomic damage, thus, increasing cell viability . These functions provide the

rationale of blocking WEE1 to increase the efficacy of DNA damaging agents and to enhance synthetic lethality. MK-1775

(also known as AZD1775 and adavosertib), a WEE1 inhibitor, has been tested in combination with several DNA damaging

agents in preclinical studies, such as gemcitabine, mitomycin C, and platinum derivatives . A phase I trial enrolling

176 patients with refractory solid tumors evaluated adavosertib in combination with chemotherapy (either carboplatin,

cisplatin, or gemcitabine) and documenting a 10% ORR. The response rate was significantly higher (21%) in the

subpopulation of TP53-deficient patients as these tumors strongly depend on WEE1 activation to arrest the cell cycle in

response to DNA damage . Recently, a dose-escalation trial enrolling treatment-naïve, locally advanced PC patients

documented a median OS of 21.7 months (90% CI, 16.7 to 24.8 months), and a median PFS of 9.4 months (90% CI, 8.0

to 9.9 months) with a combination of adavosertib, gemcitabine, and radiation therapy (RT) . A phase I/II trial evaluating

the addition of adavosertib to chemotherapy in metastatic PC is ongoing (Table 1).
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