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Cardiovascular disease remains a leading cause of mortality worldwide. Unresolved inflammation plays a critical
role in cardiovascular diseases development. Specialized Pro-Resolving Mediators (SPMs), derived from long
chain polyunsaturated fatty acids (LCPUFAS), enhances the host defense, by resolving the inflammation and tissue
repair. In addition, SPMs also have anti-inflammatory properties. These physiological effects depend on the
availability of LCPUFAs precursors and cellular metabolic balance. It would be interesting to know the role that
SPMs play in relation to metabolic variables in neonatal and adult cardiovascular physiology. This could open the

door to new therapeutic and nutritional intervention strategies, both in adults and neonates.
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| 1. Background

Despite encouraging advancement in the field of public health, cardiology, and scientific discovery for the
prevention and treatment, cardiovascular diseases are a leading cause of mortality and are one of the major public
health concerns globally. Cardiovascular diseases are responsible for 30% of deaths worldwide LBl Even after
surviving myocardial infarction or stroke, the likelihood of developing secondary complications is high, and have

significant health and economic burden through hospitalizations and follow-up clinical care.

In addition to lifestyle, nutrition also plays an important role in the etiology and treatment of cardiovascular
diseases. Nutrient-based approaches have been suggested to reduce the risk of developing cardiovascular
diseases by reducing various risk factors such as hyperlipidemia, diabetes, metabolic syndrome,
overweight/obesity, and inflammatory mediators I3, The cardioprotective effect of diet could be associated with an
improved lipid profile, decreased blood pressure, antioxidant properties, and decreased platelet activation. It is now
widely accepted that chronic inflammation plays a crucial role in the development of cardiovascular diseases.
During infection and injury, innate immune cells are recruited to the site of tissue damage and produce classical
eicosanoids that are highly pro-inflammatory. However, excessive pro-inflammatory response can cause cell
damage and occasionally apoptosis/necrosis. Failure of macrophages to clear apoptotic cells prolongs the
inflammation 8. Resolution of inflammation is regulated by a class of bioactive lipid mediators, called specialized
pro-resolving mediators. Impaired resolution of inflammation results in chronic inflammation that is associated with
cancers, autoimmune diseases, metabolic, cardiovascular, and neurodegenerative diseases resulting in organ

dysfunction [BIZ. Acute and chronic inflammation coexist over long periods. Uncontrolled inflammation and failure
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to resolve the inflammation is the underpinning of several prevalent human diseases, including cardiovascular
diseases. Furthermore, finding new ways to target the inflammatory response is gaining attraction as a new

therapeutic approach to treat these diseases [&l.

Lipids are an important structural component of the cell membrane and the susceptibility of lipid membranes to
oxidative damage is dependent on the degree of unsaturation of its fatty acids. Evidence suggests that dietary fatty
acids, more specifically long-chain polyunsaturated fatty acids (LCPUFAS), are protective against cardiovascular
diseases & and these beneficial effects are mediated by LCPUFAs derived lipid mediators 291 | CPUFAS serve
as precursors for eicosanoid production (prostaglandins, prostacyclins, thromboxanes, and leukotrienes), which are
important regulators of thrombocyte aggregation, inflammatory response, leukocyte functions, vasoconstriction,

vasodilatation, blood pressure, and bronchial constriction.

2. The Role of Fatty Acids in Cardiovascular Development
and Physiology

The perinatal life is a critical period in the development and physiology of cardiac tissue. Higher cardiac energy
metabolism is required in response to early postnatal oxygen levels, and increased cell proliferation is needed to
attain normal neonatal growth and development 12131141 Cardiomyocyte regeneration is a highly energy-
consuming process, and changes in energy metabolism happen as the neonatal cardiac development evolves
rapidly within a short postnatal period; afterward, the cardiomyocytes exit the cell cycle. Fetal cardiomyocytes use
glycolysis as the main source of energy during proliferation 13128l During early postnatal development, there is a
shift from glycolysis to using fatty acid oxidation (FAO) 118l possibly due to increased energy demand during the
transitioning from a fetal to postnatal period 12, suggesting a correlation between cardiomyocyte proliferation and
high oxidative energy metabolism. It is not clear whether this heart metabolic shift accounts for cardiomyocyte
proliferation and hypertrophy or it is a consequence of increased oxygen availability in postnatal environment.
Animal studies have shown that in younger animals, FAO facilitates cardiomyocyte proliferation and hypertrophic
growth X8 Altered FAO could be associated with cardiac diseases 2921 |ncreased levels of oxygen during
transition, from fetal to postnatal period, results in significantly increased oxidative stress as a result of the
production of reactive oxygen species (ROS) with subsequent damage to cardiac tissue. These data could suggest
that reducing the oxygen level and increased antioxidant levels might be useful to maintain the proliferative
capacity of neonatal cardiomyocytes for a longer time 1222l These data suggest that the antioxidant could be
used as a relevant therapy to extend the critical time window for cardiomyocyte proliferation by upregulating

mitochondrial biogenesis and decrease mitophagy 121231,

Cardiolipin (CL) is a phospholipid that is exclusively present in the inner mitochondrial membrane, where it is
essential for optimal functions of various key enzymes involved in mitochondrial respiration 24123, Linoleic acid is
one of the major fatty acids of CL in human myocardium 28], Evidence has shown that CL must contain four linoleic
acid side chains for optimal mitochondrial function, and loss of linoleic acid content in CL resulted in human and rat
models of heart failure 8. Furthermore, diet supplementation containing high linoleic acid attenuated contractile

failure by improving mitochondrial dysfunction in rat models of hypertensive heart failure 2.
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2.1. LCPUFAs and Cardiovascular Diseases

LCPUFAs are a group of essential fatty acids that can classify into two main categories: omega-3 (n-3) and omega-
6 (n-6), depending on the position of the first double bond from the methyl end group of the fatty acid. Linoleic acid
(LA; 18:2n-6) and o-linolenic acid (ALA; 18:3n-3) are the precursors of n-3 and n-6 LCPUFAS, respectively. The
metabolic pathway involves a series of desaturase and elongase enzymes leading to the production of
eicosapentaenoic acid (EPA; 22:5n-3) from ALA or arachidonic acid (ARA; 20:4n-6) from LA, based on the

availability. EPA is then elongated and desaturated to produce docosahexaenoic acid (DHA; 22:6n-3).

Human studies have shown limited endogenous synthesis of DHA from n-3 fatty acid precursor ALA, necessitating
the exogenous supplementation of a diet containing n-3 LCPUFAs for optimal health and development 28129 |
adults, circulating EPA levels increased with DHA supplementation. However, ALA and EPA supplementation did
not result in increased DHA levels in circulation 22, In contrast, Metherel et al. showed that supplemental EPA was
converted to DHA B9 |ncreased levels of DHA to EPA could be either due to retro-conversion 18233l or reduced

EPA metabolism B4, suggesting that circulating levels of EPA and DHA are differently regulated.

A large, prospective, randomized clinical trial of 11,324 patients with a recent myocardial infarction showed a
reduced relative risk of death in response to LCPUFAs 23], A lower rate of myocardial infarction was observed in
people consuming an Inuit diet, a diet characterized by the high consumption of marine mammals and fish 8. The
Inuit diet is rich in n-3 LCPUFAs, particularly EPA and DHA compared to those consuming a Western diet, which is
abundant in n-6 LCPUFAs, mainly derived from vegetable oils rich in LA LUE7 Furthermore, a significant
difference was observed for cardiovascular mortality in two cohorts with n-3 versus n-6 LCPUFA enriched diets 28
(391, Clinical studies have shown a reduction in mortality of patients with cardiovascular diseases in response to n-3
LCPUFAs 4941 Meta-analyses in adults have shown that the Mediterranean diet, enriched in n-3 LCPUFAs 42
and oleic acid 43, has a protective effect against cardiovascular diseases 4344145 These studies declared the
importance of bioactive compounds related to the diet. The beneficial effect of n-3 LCPUFAs (EPA and DHA)
against cardiovascular diseases could be due to anti-arrhythmic, anti-inflammatory, anti-thrombotic, and
hypolipidemic effects and improvement of vascular function #8471 However, a recent clinical trial failed to show a
protective effect against arrhythmia in patients with myocardial infarction 48, Supplementation of n-3 LCPUFAs

showed no effect on atrial fibrillation 42, cardiac death, myocardial infarction, or stroke (9],

In the Mediterranean diet, one of the main dietary source of n-3 LCPUFAs is fish, particularly oily fish species and
shellfish B, Neonates, specifically preterm infants, are at risk of a LCPUFA deficit, which has been associated with
a subsequent increased risk of various neonatal diseases [22l. Infants with heart disease may require longer
parenteral nutrition during their hospitalization that fails to maintain the critical blood levels of LCPUFASs. In
neonates, adequate nutritional intake of LCPUFAs is important for visual development, growth, complex brain
function, and immune function B3, Parenteral administration of n-3 LCPUFAs containing lipid emulsion to infants
previous to cardiac surgery decreased pro-inflammatory response after surgery 4. These data suggest the

beneficial impact of LCPUFASs in infants with cardiac diseases [22].
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2.2. LCPUFAs Derived Mediators and Their Implication in Cardiovascular
Physiology

LCPUFAs act as substrates for oxylipin production. LCPUFA metabolism to oxylipins occurs through three different
pathways that are mediated by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 enzymes
(CYP) as a result of transcellular biosynthesis and coordination between distinct cell types BB Additionally,
oxylipins can be produced by free radical catalyzed non-enzymatic lipid peroxidation 2859, High n-6 LCPUFAs and
n-3 LCPUFAs intake is associated with higher levels of n-6 and n-3 LCPUFA-derived oxylipins, respectively 53, In
recent years, an active role for to maintain the tissues homeostasis has been attributed to the local generation of
specialized pro-resolving mediators (SPMs). SPMs exert their effect by interacting with G-protein coupled receptor
(GPCR), such as ALX/FPR2, GPR32, ChemR23, BLT1, and GPR18 86l and modulate diverse biological
responses (%2 by regulating mitogen-activated protein kinase signaling, NF-kB pathways, AP-1 activation, and
oxidative stress-related metabolism 3. SPMs suppress the expression of adhesion molecules on leukocytes,
endothelial cells, neutrophil chemotaxis, and IL-8 production. Frequently, SPMs are rapidly inactivated locally by

eicosanoid oxidoreductases and prostaglandin dehydrogenase 64!,

Omega-6 mediators. The most well-known oxylipins, the eicosanoids, are formed from ARA. ARA produces
series-2 oxylipins via the COX pathway, resulting in the formation of prostaglandin G2 and subsequently to
prostaglandin H2, which later gets converted to other prostaglandins and thromboxanes by specific prostaglandin
and thromboxane synthases enzymes [ (Figure 1). Prostaglandins make a huge oxylipins family with multiple
biological functions such as inhibition of human platelet aggregation [8816768]  neutrophil degranulation 89, innate
immune response 9 activation of plasminogen activator inhibitor type-1 4 and reducing pulmonary vascular
resistance 2. Prostaglandins can either have pro-inflammatory and vasoconstrictor effects 3l or anti-
inflammatory and vasodilator effects 8468 depending on to which receptor it binds 4. Thromboxane A2 is an
endothelium-derived oxylipin that potentially induces vasoconstriction and platelet aggregation B4 and

thromboxane B2 is positively associated with high central blood pressure and multiple cardiovascular events Z3JZ8],
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Figure 1. Pathways to synthesize n-6 LCPUFA-derived lipid mediators and their functions focusing on the
cardiovascular system and vascular endothelial function. C18:2n-6, Linoleic acid; C18:3n-6, y-Linolenic acid;
C20:3n-6; Dihomo-y-Linolenic acid; C20:4n-6, Arachidonic acid; ROS, Reactive Oxidative Species. | = Decreases;
t = Increases. Modified from (23],

In addition to the COX pathway, oxylipins are also formed by a second pathway involving LOXs that catalyze the
formation of hydroxy fatty acid (5-, 12-, and 15-HETE are the most commonly described ) and their secondary
metabolites, such as leukotrienes, lipoxins, resolvins, protectins, maresins, hepoxilins, and eoxins, via glutathione
peroxidase . ARA, via the LOX pathway, produces HpETEs, which can be further converted to leukotrienes
(series-4), which are associated with atherosclerosis, endothelial dysfunction, and cytokine release 8. Moreover,

leukotrienes can also be converted to lipoxins B2, which play a role in the resolution of inflammation 2,

The third pathway that leads to oxylipins from LCPUFA metabolism involves a diverse array of membrane-bound
cytochrome P450 (CYP) enzymes. ARA metabolism through CYP pathway activity results in the formation of HETE
by CYP omega-hydroxylase activity. Cytochrome P450 can also act on ARA to synthesize epoxides, which could

have vasodilator and vascular relaxing effects 89,

Limited information is available about LA-derived oxylipins. LA produces oxylipins through the LOX pathway (i.e.,
13-HODE), COX pathways (i.e., 9-HODE), and epoxygenase activity of CYP (i.e., EpOME), as well as non-
enzymatical pathways (i.e., 9-HODE; Figure 1), and the relative importance of these pathways needs to be
explored. LA-derived oxylipins have been shown to attenuate platelet adhesion to endothelial cells 1, induce
oxidative stress and a pro-inflammatory response in vascular endothelial cells 283l activate plasminogen
activator inhibitor type-1 X1, and prevent platelets from adhering to human vascular endothelial cells (43l

However, the direct effect of LA-derived oxylipins on the heart has not been studied.
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Omega-3 mediators. ALA, a precursor for n-3 LCPUFAs, can be metabolized to oxylipins by LOX 881, cox B2 or
CYP cyclooxygenase activity B2 (Figure 2). ALA, metabolized via Cytochrome P450, results in epoxy fatty acids
(871 and the levels of these epoxy fatty acids were decreased in adults with hyperlipidemia 88,
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Figure 2. Pathways to synthesize n-3 LCPUFA-derived lipid mediators and its function focusing on the
cardiovascular system and vascular endothelial function. C18:3n-3, a-Linolenic acid; C18:4n-3, Stearidonic acid;
C20:4n-3, Eicosatetraenoic acid; C20:5n-3, Eicosapensaenoic acid; C22:5n-3, Docosapentaenoic acid; C24:5n-3,
Tetracosapentaenoic acid; C24:6n-3, Tetracosahexaenoic acid; C22:5n-3, Docosahexaenoic acid; ROS, Reactive

Oxidative Species. | = Decreases; 1 = Increases. Modified from 2],

Similar to ARA, EPA metabolism through COX pathways generates oxylipins that includes series-3 prostaglandins
(i.e., PGE3) and thromboxanes (i.e., thromboxane A3) B2, However, relative to ARA, EPA is a weak substrate for
COX enzyme B3, Furthermore, EPA via LOX pathway results in leukotrienes (series-5) 9. An in vitro study has
shown that leukotrienes derived from both n-6 and n-3 LCPUFAs induce neutrophil lysosomal degranulation.
However, n-3 LCPUFA-derived leukotriene (leukotriene B5) is less effective compared to n-6 LCPUFA-derived
leukotriene (leukotriene B4) 21l In addition, leukotriene B5 could be less inflammatory than leukotrienes 4-series
921 The epoxides-fatty acids derived from EPA via CYP pathways [22l inhibits platelet aggregation, affect

vasodilation, and have an antiarrhythmic effect in neonatal cardiomyocytes 24251, E_series resolvins synthesized

https://encyclopedia.pub/entry/11081 6/22



SPMs in Neonatal Cardiovascular Diseases | Encyclopedia.pub

by cytochrome P450 from EPA [84[96] have been shown to reduce neutrophil migration and inflammatory responses
Eu)

In addition to EPA, DHA is the other predominant omega-3 LCPUFA. DHA metabolism through LOX pathway leads
to the production of maresins, resolvins (D-series), and protectins 3. These endogenous lipid mediators including
lipoxins, among other SPMs 23, DHA-derived 4-hydroxy-docosahexaenoic acid (14-OH-22:6) potentially inhibits
platelet aggregation [8. Resolvins play an important role in inflammation, vascular biology, and platelet
aggregation (2190 DHA-derived oxylipins can also be synthesized by COX 1902 and cytochrome P450

epoxygenase. DHA derived epoxy-fatty acids 23 are known to decrease platelet aggregation and thromboxane A2
synthesis [921103],

In general, oxylipins generated from n-3 LCPUFAs have lesser effectiveness compared to those derived from n-6
LCPUFAs. The effect of n-3 LCPUFA-derived oxylipins could be antagonized by oxylipins derived from n-6
LCPUFAs 194 The n-3 LCPUFAs often compete with n-6 LCPUFAs for the same receptor and enzyme. The
degree of membrane LCPUFAs incorporation might play an important role in determining the biological effect.
Moreover, the enzyme activity could be regulated by increasing or decreasing the initial substrate within a given

pathway.

3. The Role of SPMs in Cardiovascular Inflammation
Resolution

The resolution of inflammation is tightly regulated by endogenously produced lipid mediators such as SPMs. These
molecules can be lipoxins, resolvins, protectins, and maresins 123, SPMs resolve the inflammation by alleviating
the pro-inflammatory response, reducing neutrophil infiltration, and clearing the apoptotic cells through
macrophages, and thus, enhancing the host defense. In addition, SPMs restrict the T cells actions, which is the
main cellular responses involved in chronic inflammation 1961071 SpMs are an important modulator of oxidative
stress. There is evidence showing lipoxins inhibit leukocyte-dependent generation of reactive species (63!, L XA4
treated cardiomyocytes activate MAP-kinase and Nrf2 pathways 198 whose antioxidant properties are essential
for cardiac protection 199 |n animal models, RvD1 reduces reactive oxygen species-mediated IL-1p secretion in
macrophages 119 and protects against oxidative stress inflammation inhibiting neutrophil infiltration 11X, RvD1 and
maresin 1 have been shown to regulate Nrf2-dependent expression of glutathione peroxidase and superoxide
dismutase 112131 Kang et al. have reviewed a details summary about the role of EPA- and DHA-derived SPMs
and Nrf2-antioxidative responses in cardiac fibrosis 102,

SPMs cause a shift in macrophages from M1 (pro-inflammatory) to M2 (anti-inflammatory) 224IL15] | addition to
regulating the innate immune response, SPMs are also important in the adaptive immune response by reducing the
NK cells cytotoxicity 118, decreasing memory B cell and antibody production 27, D-series resolvins and maresin 1
dampen the cytokines production by activated CD8* T cells, TH;, and TH;7 cells and promotes the differentiation of
CD4* T cells into Treg cells, while inhibiting the generation of TH; and TH;7 from naive CD4* T cells [108I[118]

Patients with chronic heart failure (CHF) have significantly reduced the plasma levels of RvD1 and pretreatment of

https://encyclopedia.pub/entry/11081 7/22



SPMs in Neonatal Cardiovascular Diseases | Encyclopedia.pub

mononuclear cells of patients with CHF with RvD1 or RvD2, which did not affect cytokine release from CD8* and
CD4* T cells. This impaired T cells response was associated with reduced GPR32 expression 197, The interaction
between SPMs, their receptors, and their effect depend on the level of SPMs, cell type, and surrounding
environment. Uncontrolled and unresolved inflammation can result in cardiovascular diseases, suggesting the
critical role of SPMs. An extensive review regarding the lipid signaling pathways in cells and these effects on adult

cardiovascular physiology and regeneration was covered by Wasserman et al. (119,

The etiology of cardiovascular disease involves a chronic inflammatory process driven by the formation of lipid-rich
lesions in the vascular wall leading to myocardial infarction and stroke. Evidence about the role of SPMs in
cardiovascular diseases came from human and animal studies. Serhan et al. have shown increased lipoxin levels
in humans after angioplasty 129, Overexpression of 15-LOX in macrophages resulted in a significant reduction of
atherosclerosis in rabbits 1211221 \yhijle there was delayed atherogenesis in mice 1231, Administration of RVE1
attenuated atherogenesis in rabbits fed with a high fat and cholesterol diet, possibly by reducing the levels of C-
reactive protein (CRP) 124,

The formation of a vulnerable plaque region (a subset of atherosclerotic plaques), with increased inflammation,
oxidative stress, and necrotic areas as a result of increased cell death, might lead to acute atherothrombotic clinical
events, such as myocardial infarction and stroke, probably due to a defective inflammation-resolution process 123!
[128][127] ' Advance plaque regions in Ldir—/— or ApoE—/— mice fed a high-fat and high-cholesterol diet displayed an
imbalanced ratio of SPMs and pro-inflammatory lipid mediator ratio compared to early plaque regions [12811129]
Furthermore, SPM administration, including RvD2 and Maresin 1, or aspirin-triggered lipoxin A4, caused delayed
atherosclerosis and resulted in a more stable-like plaque phenotype 12911301 probably due to decreased necrosis,

oxidative stress, and increased fibrous cap thickness and helping in tissue repair processes.

Decreased blood flow can lead to tissue injury, as a result of the inflammatory response, due to leukocyte
infiltration and ROS production 221, This suggests that controlled leukocyte infiltration, as well as their removal
from the site of injury, is important to protect the heart and myocardium during ischemia. Indeed, in mice,
exogenous administration of RvD1 has been shown to improve cardiac function by reducing leukocyte infiltration
and fibrosis [232. Moreover, in a rat model of myocardial ischemia/reperfusion injury, RVE1 protects the rat heart by
decreasing infarct size 133l |n addition to the heart, the protective effects of SPMs have been reported in other

tissues, including the kidney and lung 23411351 'nossibly by reducing leukocyte recruitment.

Atherothrombosis is one of the clinical manifestations which leads to myocardial infarction and stroke 381, platelets
and neutrophils aggregation are important for plaque inflammation 227, Increased levels of circulating leukocyte-
platelets aggregates in cardiovascular diseases suggest their contribution to pathogenesis. Moreover, elevated
levels of platelet-monocyte aggregates have been used as an early marker of acute myocardial infarction (238, |t is
possible that platelets and neutrophils/macrophage aggregates cause plaque formation and cardiovascular disease
and are unable to produce enough SPMs. The levels of lipid mediators, specifically thromboxane and prostacyclin,
are critical for platelet activation and thrombosis. In a randomized human-clinical trial, healthy subjects receiving

aspirin at a recommended dose for patients with cardiovascular diseases (low dose = 81 mg) resulted in aspirin-
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induced 15-epi-LXA4, and the levels were negatively correlated with plasma thromboxane B2 levels, reducing the
platelets activation 232, Moreover, EPA-derived RVE1 has been shown to have an antiplatelet aggregation activity
(2401 |n response to acute inflammation, the self-limiting events such as platelets and neutrophils aggregation are
critical and involve the biosynthesis of SPM to timely resolve the inflammation by reducing platelets and neutrophils

aggregation, decrease cytokines production, and increase apoptosis [141]1142]

SPMs, such as marsein 1, induce a pro-resolving platelet phenotype by increasing platelet aggregation and
decreasing the levels of pro-inflammatory and pro-thrombotic mediators. All these data suggest the key role of
SPM in promoting resolution inflammation as well as thrombosis during inflammation, and thus, could have

potential therapeutic implications in cardiovascular diseases.

SPMs in Infant Cardiovascular Health and Disease

LCPUFAs and oxylipins can modulate the balance for infant cardiac health and disease, by regulating the
inflammation pathways. Gestational age and birth weight are important risk factors for the development of
cardiovascular diseases [BI14311144] nossibly by reducing endothelial function 145111461 prostaglandin E2 treatment is
widely used in aortic coarctation 1471 which is the third most common congenital cardiac lesion in preterm infants
(2481 phy widening of the constricted ductal tissue within the aorta. Conversely, prostaglandin E1 in near-term infants
resulted in a worsening of the aortic constriction 149, Differences in pharmacokinetics and pharmacodynamics
efficacy of prostaglandin therapy depend on the clinical course, the effects of surfactant-deficient lung disease,

concurrent infections, myocardial insufficiency, and hemodynamic instability.

The ductus arteriosus is the fetal artery that connects the pulmonary artery and the aorta. The closure of the ductus
arteriosus mostly occurs within three days of life in healthy term newborns as a result of increased oxygen level
and reduced prostaglandin E2 159, However, in preterm infants, the ductus fails to close, resulting in patent ductus
arteriosus (PDA). PDA is a heart problem that is common in preterm infants and causes morbidities such as
bronchopulmonary dysplasia, intraventricular hemorrhage, and necrotizing enterocolitis and mortality 2311152 The

current strategy to treat ductus arteriosus involves the use of prostaglandins 154,

Inhibition of ARA-derived epoxides hydrolases showed beneficial cardiovascular effects, including vasodilation,
anti-inflammation, anti-hypertrophy, and myocardial protection 153112541 However, other data showed that epoxide
hydrolase inhibition did not prevent cardiac remodeling or dysfunction 221 suggesting that targeting particular

oxylipins seems to be insufficient for preventing cardiovascular events.

The E-series and D-series resolvins derived from n-3 fatty acids are important mediators in the resolution of
inflammation 1561 but their ability to modulate contraction of vascular smooth muscle is not known. In
cardiovascular diseases, resolvins E1, D1, and D2 prevented constriction in human arteries induced by

thromboxane 137 by resolving inflammation and preventing inappropriate vascular contractility.

Altered levels of resolvins are associated with cardiovascular disease onset, propagation, and systemic

inflammation. Plasma levels of D-series resolvins were negatively correlated with decreased platelets and
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leukocyte activation 28], Resolvin D1 administration in mice resulted in improved ventricular function following
myocardial infarction by activating inflammatory response 132, Most of the human studies regarding the effect of
SPMs in cardiovascular disease have been done either in adult population or in children over 3 years. How these
oxylipins act in neonatal cardiovascular remodeling and how nutritional intervention modulates this interaction need

to be explored.
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