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Dystrophin isoform Dp427-M is tightly associated with a variety of glycoproteins at the muscle sarcolemma membrane.

The core dystrophin-glycoprotein complex forms a variety of links to components of the extracellular matrix and the

intracellular cytoskeleton. The wider dystrophin complexome plays a crucial functional role as an integrative node of the

skeletal muscle periphery. The sarcolemmal dystrophin node is involved in the maintenance of fiber stability, the provision

of cellular signaling cascades, organizer of cytoskeletal networks and costameric anchor for lateral force transmission.
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1.The Core Dystrophin Complex in Skeletal Muscle

The full-length dystrophin isoform Dp427-M belongs to the class of giant muscle proteins  and consists of several distinct

molecular domains as illustrated in the upper panel of Figure 1. This includes amino-terminal and central actin-binding

domains, proline-rich hinge regions, spectrin-like rod domains and crucial carboxy-terminal binding sites for interactions

with plasmalemmal and cytosolic components . Dystrophin closely interacts with the integral proteins beta-

dystroglycan, alpha/beta/gamma/delta-sarcoglyan and sarcospan of the sarcolemma, the extracellular receptor alpha-

dystroglycan and laminin-211, the cytosolic components alpha/beta-dystrobrevin and alpha/beta-syntrophin, and the

cortical actin cytoskeleton , as shown in the lower panel of Figure 1.

Figure 1. Overview of the domain structure of dystrophin and the diverse interactions of the dystrophin–glycoprotein

complex in skeletal muscle tissues. The upper panel shows a diagrammatic presentation of the main molecular domains

of dystrophin isoform Dp427-M, including actin-binding sites at the N-terminus and central rod domain, proline-rich hinge

regions (H1 to H4), spectrin-like rod (SLR) domains 1–3, 4–19 and 20–24, a cysteine-rich domain with binding sites for

integral beta-dystroglycan (DG), the cysteine-rich domain (CR) and the C-terminus with binding sites for dystrobrevin

(DYB) and syntrophin (SYN). The lower panel shows a model of the spatial configuration of the dystrophin complexome in

skeletal muscle fibers. Shown is the dystrophin core complex consisting of the dystrophin isoform Dp427-M, dystroglycans

(DG), sarcoglycans (SG), sarcospan (SSPN), syntrophins (SYN) and dystrobrevins (DYB), as well as the wider

dystrophin-associated network that forms associations with the extracellular matrix, the sarcolemma, the cytoskeleton and

the sarcomere.
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Sedimentation analysis of the isolated dystrophin complex suggests a monomeric structure with an apparent molecular

mass of 1.2 MDa . In Duchenne muscular dystrophy, alterations in the expression of members of the dystrophin network

are closely related to key pathophysiological features in dystrophin-deficient muscles, including degeneration-regeneration

cycles, reactive myo-fibrosis, fat substitution and sterile inflammation. Detailed reviews have been published on the

composition of the core dystrophin complex , as well as the role of dystrophin and its associated glycoprotein

complex in the multisystemic complications of dystrophinopathy and pathophysiological crosstalk throughout the body

. Here we refer to specific aspects of dystrophin interactions that are crucial for our general understanding of

the wider functional role of the dystrophin complexome in normal skeletal muscle tissue.

2. The Dystrophin Node in Skeletal Muscle

A model of the spatial configuration of the core dystrophin complex and its association with the extracellular matrix on the

one hand and the intracellular cytoskeletal network of contractile fibers on the other hand is presented in the lower panel

of above Figure 1. The cell biological concept that the dystrophin–glycoprotein complex occupies a central position at the

fiber periphery is summarized in Figure 2. The diagram shows that the dystrophin-associated surface complex forms an

organizing node that is majorly involved in (i) the provision of sarcolemmal membrane integrity via a stabilizing linkage

between the intracellular actin cytoskeleton and the extracellular matrix protein laminin , (ii) the establishment of a

molecular scaffold and anchoring system for ion channels and enzymes to mediate cellular signaling processes  (iii)

the organization of actin filament attachment and its associated cytoskeletal network , and (iv) the mediation of lateral

force transmission from sarcomeric contraction to the endomysium and its connected layers of the extracellular matrix

.

Figure 2. Outline of the main functions of the dystrophin node and its associated protein complex as integrators of fiber

stability, cellular signaling, cytoskeletal organization and lateral force transmission. The upper panels summarize the main

functions of the trans-sarcolemmal axis formed by the intracellular actin cytoskeleton, the dystrophin–dystroglycan

complex, the basal lamina component laminin and the extracellular matrix. The lower panel illustrates the physiological

concept of force transmission in skeletal muscles, which can be divided into a laterally and a longitudinally acting system.

In conjunction with other costameric proteins, the dystrophin–glycoprotein complex (DGC) is majorly involved in lateral

force transmission to the extracellular matrix.

3. The Sarcolemmal Dystrophin Complex and Lateral Force Transmission

The peripheral structure of skeletal muscle fibers functions as an essential physical barrier with its protective basal lamina.

The underlying sarcolemma membrane provides the physiological structure for the efficient exchange of ions, metabolites

and signaling molecules within the contractile system . The plasmalemma is connected to the terminal cisternae region

of the sarcoplasmic reticulum at the triad junctions via its invaginations, the transverse tubules. This intricate membrane

assembly and its associated Ca -handling apparatus is involved in the fine regulation of excitation–contraction coupling,

muscle relaxation and ion homeostasis, and encounters enormous physical strain during contraction–relaxation cycles .

The dystrophin-associated complex is implicated to act as a biomolecular shock absorber by linking the basal lamina to

the actin cytoskeleton and thus preventing rupturing of this muscle membrane system .
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At specialized costamere regions, which play both a mechanical and a signaling role, the dystrophin complex forms in

conjunction with the integrin–vinculin–talin axis a link to the contractile sarcomere units . This bridging structure is

postulated to provide an indirect means of lateral force transmission to the collagen-rich muscle exterior, in addition to

longitudinal forces that are transmitted directly from the contractile apparatus through the cytosol to the myotendinous

junction . In skeletal muscle fibers, the characteristic longitudinal pattern of A bands and I bands reflect the

organization of myosin-containing thick filaments and actin-containing thin filaments with their contractile sarcomeric units,

which are positioned between Z discs. Following the energy-dependent crossbridge coupling between myosin heads and

actin filaments, thin filaments slide past thick filaments. The force generated by this sarcomeric shortening event is

partially transmitted by a lateral direct force between Z-disk structures and the M-line regions of neighboring myofibrils.

Costamere structures at the fiber periphery play a central role as sensors of the relative mechanical load and support

force transduction across the muscle plasma membrane. Contractile force is then further transmitted to the complex

layers of the extracellular matrix, consisting of endomysium, perimysium and epimysium, towards the tendon and bone

structure . The second type of force transmission mechanism works by longitudinal means through internal muscle

structures embedded in the cytosol. Both lateral and longitudinal coupling mechanisms act in parallel and ultimately

transmit the force generated by the actomyosin apparatus in the sarcomere to the tendon and anchoring structures such

as bone, as diagrammatically summarized in the lower panel of Figure 2. The dystrophin-associated dystroglycan

subcomplex was shown to play a critical role in the sarcomeric cytoskeleton by limiting contraction-induced injury to

skeletal muscle fibers .

The elucidation of the multifaceted functions of the dystrophin–glycoprotein complex in maintaining membrane stability

during excitation–contraction–relaxation cycles, assisting lateral force transmission through costameres and providing a

scaffold for anchoring surface receptors and maintaining cellular signaling mechanisms was carried out by

multidisciplinary approaches. This included molecular genetics, biochemical purification strategies, structural/biophysical

analysis, mass spectrometric proteomics analysis, bioinformatics, chemical crosslinking, cell biological characterization

and comparative biomedical studies.

4. Muscle Dystrophin Dp427-M and Its Associated Glycoprotein Complex

The large muscle isoform of dystrophin is a rod-shaped protein  with considerable homology to the actinin superfamily

of actin crosslinking components, which also includes utrophin and spectrin . Both, dystrophin isoform Dp427-M of the

sarcolemma and its autosomal homologue, utrophin isoform Up395-M of the neuromuscular junction, exhibit typical

biochemical properties of cytoskeletal components, such as insolubility in non-ionic detergent and efficient extraction by

alkaline treatment . Compared to the main components of the contractile actomyosin apparatus and its regulatory

sarcomeric elements, dystrophin represents a relatively minor component of the skeletal muscle fiber proteome. However,

dystrophin isoform Dp427-M constitutes a considerable fraction of the subsarcolemmal cytoskeleton in contractile

tissue . This makes full-length dystrophin an important structural and functional component of the sarcolemmal lattice

and costamere structures . Besides being present in contractile fibers, dystrophin isoforms also exist in many non-

muscle cells . The various dystrophins are encoded by the 79 exon-spanning DMD gene, whereby seven different

promoters drive the tissue-specific expression of the full-length isoforms Dp427-B in brain, Dp427-M in muscle and

Dp427-P in Purkinje cells , as well as the shorter isoforms Dp260-R in retina , Dp140-B/K in brain and kidney ,

Dp116-S in Schwann cells  and Dp71-G in the brain  and a variety of other tissues including the spleen . The

promoter for Dp71 also produces the shortest known dystrophin isoform named Dp45, which is located in the central

nervous system . Of note, the central nervous system displays one of the greatest varieties of dystrophin isoforms,

which are involved in synaptic modulation, neuronal excitability and signal integration. Brain Dp427-B is present in

neurons of the cerebral cortex and in cerebellar Purkinje cells, Dp140-B is highly expressed during brain development and

Dp71-G is located in both neurons and glia cells in the dentate gyrus . Cognitive impairments and emotional

disturbances in Duchenne patients are probably linked to altered dystrophin expression in the central nervous system and

this is reflected by structural brain abnormalities . The formation of dystrophin complexes and their involvement in

dystrophinopathy-associated brain defects has been reviewed by Waite et al. .

The composition of the dystrophin–glycoprotein complex has been extensively investigated using a combination of

digitonin-based solubilization, wheat germ agglutinin lectin chromatography, ion exchange chromatography and density

gradient ultracentrifugation , as well as various chemical crosslinking and immunoprecipitation approaches

. Differential detergent extraction procedures , two-dimensional gel electrophoresis  or alkaline

dissociation  can be used to isolate individual dystrophin subcomplexes or separate the dystrophin-associated

glycoprotein complex from homogeneous dystrophin molecules. Based on these analyses, the core members of the

dystrophin-associated complex can be divided into (i) cytosolic components alpha/beta-dystrobrevin  and

alpha/beta-syntrophin  that interact with the cysteine-rich domain of dystrophin; (ii) integral glycoproteins, including
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the alpha/beta/gamma/delta-sarcoglyan subcomplex , the highly hydrophobic protein sarcospan  and the

main carboxy-terminal dystrophin-binding partner beta-dystroglycan ; (iii) laminin-211  and its extracellular receptor

alpha-dystroglycan , which is a proteolytic cleavage product of the pre-dystroglycan molecule ; and (iv) the

intracellular actin cytoskeleton that links to an amino-terminal and a rod domain site of full-length dystrophin .

The sarcoglycan subcomplex is initially assembled by the formation of a core between beta-sarcoglycan and delta-

sarcoglycan, which subsequently recruits the other two sarcoglycans . Through interactions with sarcospan and

additional dystrophin-associated proteins, the sarcoglycan complex secures the formation and mechanical maintenance of

the sarcolemmal dystrophin complex. Besides its integrating role in membrane stabilization, the sarcoglycan subcomplex

can be chemically modified during fiber contraction, which provides the transduction of information on relative contractile

force into cellular signaling . Interestingly, both components of the dystroglycan subcomplex are products of the same

gene, DAG1, which encodes a pre-pro-protein version of alpha/beta-dystroglycan that includes a signaling peptide and

both subunits . The precursor protein is extensively modified by N- and O-glycosylation and undergoes proteolytic

processing that generates the integral glycoprotein beta-dystroglycan and the extracellular laminin-binding receptor alpha-

dystroglycan . Thus, the two dystroglycans form the backbone of the trans-sarcolemmal linkage between the basal

lamina component laminin-211 and the dystrophin-associated actin cytoskeleton in the subsarcolemmal region of skeletal

muscle . The phosphorylation of beta-dystroglycan, especially intracellular tyrosine residues , is a crucial step

during interactions with signaling proteins . The phosphorylation of the cysteine-rich region in the carboxy-terminal

domain of dystrophin also plays a key role in strengthening the interaction with beta-dystroglycan. Thus, post-translational

modifications are important modulators of dynamic associations within the dystrophin–dystroglycan axis.

5. The Dystrophin Complex as a Cellular Signaling Node in Skeletal
Muscle

Besides providing the above-described stabilizing linkage between the basal lamina and the membrane cytoskeleton and

thereby functioning as a molecular shock absorber, the dystrophin complex also acts as a critical hub for cellular signaling

at the muscle plasma membrane . The dystrophin complexome has been implicated to be involved in the modulation of

hypertrophy, major kinase signaling cascades, the organization of caveolae structures, the regulation of skeletal muscle

size, the mitogen-activated protein kinase pathway, the regulation of ion homeostasis, cytoskeletal organization, G-protein

signaling and neuromuscular transmission in conjunction with its autosomal homologue utrophin, as well as mechano-

sensing and cytoskeletal remodeling in association with the laminin-collagen bridge and the sarcolemmal integrin

complex .
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