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Sleep apnea detection can be performed with externally mounted devices or ambient sensors, other than

biomedical sensors. One such technique for sleep apnea detection is based on smartphones.

sleep apnea machine learning deep learning wearable systems

| 1. Introduction

Sleep apnea is a sleep disorder in which a sleeping person’s breathing is disturbed. It is prevalent in adults as well
as a small percentage of the juvenile population . Subjects suffering from sleep apnea undergo periods of no or
shallow breathing during their sleep. The former condition in which breathing stops temporarily is referred to as
apnea, while the latter condition of periods of shallow breathing or airflow reduction is called hypopnea. Clinical
comorbidities can result from either condition and, therefore, both are detrimental to a person’s well-being [&. The
physiological symptoms of sleep apnea include snoring, gasping for air during sleep, waking up with dry mouth
and, in general, low sleep quality, thereby leading to low attention, insomnia, decrease in cognitive skills, accidents,
memory loss and depression. In addition to the low quality of life caused by sleep deprivation and fatigue, sleep
apnea may also lead to severe issues such as diabetes, cardiovascular problems, hypertension, neurological
issues, and liver problems. Due to the global prevalence of sleep apnea as well as the direct and indirect long-term
problems it brings about, it is important to diagnose and treat this condition. In this paper, we review the recent
state-of-the-art research in the application of machine learning for sleep apnea detection. The review covers the
parameters and sensors used, and feature engineering approaches for enabling sleep apnea detection using

machine learning.

There are three types of sleep apnea: Obstructive sleep apnea (OSA) occurs due to improper functioning of the
upper respiratory tract. When the muscles of the hard palate in the back of the throat that supports that soft palate
relax, the soft palate blocks the passage of air to the respiratory system. This leads to stoppage of breathing for
short durations [Bl. Central sleep apnea (CSA) occurs when the brain fails to generate or transmit signals that
control breathing muscles. This leads to short durations of time when the subject does not breathe at all. Complex
sleep apnea syndrome is manifested with central apnea persisting even after obstructive events have disappeared

with PAP therapy [4l. Javaheri et al. B describe the etiological risk factors for sleep apnea and its consequences.

2. Machine Learning in Sleep Apnea Detection Based on
Biomedical Markers in Wearable Devices
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The common set of biomedical parameters that is used to detect sleep apnea include SpO2, heart rate, ECG and
EEG. Biomedical informaticians have used various machine learning techniques to predict the accuracy of sleep
apnea diagnosis using these aforementioned parameters and their derivatives. Of late, the effectiveness of
ensemble classifiers and deep learning techniques has also been investigated. The features used for sleep apnea
detection could be reported directly from sensors, or extracted from various sensor observations. There has also
been extensive research into utilizing observations from one or more of these sensors using data fusion to detect
sleep disorders. Studies also include the impact of extracting statistical, time and frequency domain features from
the parameters, and performing dimensionality reduction to downsize the feature vectors on the classifier
performance. The following paragraphs provide examples of how classic machine learning, deep learning, and
sensor fusion technigues have been applied to detect sleep apnea. Deep learning can be considered as a
specialized segment of machine learning; however, the manner in which feature engineering is accomplished

differs greatly from each other.

In many research papers, single biomedical markers, such as SPO2, ECG, EOG, or EEG, have been used for the
detection of sleep apnea. Among these, most studies focus on using SPO2 and ECG signals. For example, in &,
SPO2 signals are used for OSA detection. During feature engineering, ODI, total time below saturation levels (tsa),
and other six features were extracted from SPO2. Various variants of decision tree (DT) classifiers were used to

obtain an accuracy of 93%. In [ too, pulse oximeter parameters are used for sleep apnea detection.

ECG is another parameter that is commonly used in the detection of sleep apnea. Hassan et al. [l compare
various machine learning classifiers on a dataset generated by a single lead ECG sensor. Statistical moment-
based and empirical mode decomposition features were extracted from the raw data. Post feature extraction, Naive
Bayes, k-nearest neighbor (kNN), neural network, AdaBoost, Bagging, random forest, extreme learning machine
(ELM), discriminant analysis (DA) and restricted Boltzmann machine were compared for performance. ELM gave
the best accuracy of 83.77%. A dataset based on single-lead ECG was used in [ as well to detect sleep apnea. In
this study, segments of ECG signals were fed into dual-tree complex wavelet transform (DTCWT) to generate
frequency sub-bands. Three statistical features—variance, skewness, and kurtosis—were extracted from the
DTCWT output and analyzed to determine their suitability in detecting sleep apnea. LogitBoost gave an accuracy
of 84.4%. Other classifiers analyzed include DA, kNN, Artificial Neural Network (ANN), ELM, SVM, AdaBoost and

Bagging. ECG signals have also been used not just for the detection of sleep apnea, but also to determine its type
@1,

In 29 |HR is used as the sole marker for sleep apnea detection. This paper argues that using only IHR and its
derivatives can provide 85% accuracy at best, with simple classification algorithms for classifying minute-to-minute
apnea. Therefore, LSTM—RNN was employed for the identification of sleep apnea and its severity. Various
configurations of LSTM-RNN, post feature extraction and selection, were used for training, which yielded 99.99%
accuracy in detecting sleep apnea. Erdenebayar et al. (11 describe a comparative study of the performance of
deep learning classifiers on ECG signals—the classifiers are Deep Neural Network (DNN), 1D CNN, 2D CNN,
RNN, LSTM and gated-recurrent unit model (GRU). The 1D CNN and GRU models were the best performing with
an accuracy and recall of 99%. Other studies include [12113114]
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In B3 prabha et al. make use of HRV and Respiratory Rate Variability (RRV) from ECG and respiratory effort
signals (RES), respectively. A decision making system which fuses time-domain features from HRV and RRV
signals, by combining their outputs with empirically calculated weights, produced an accuracy of 100%. The weight
associated with time-domain HRV features was considerably higher than that of time-domain RRV features, which
indicates that HRV has a higher correlation with sleep apnea detection than RRYV, although the latter may be
complementing the former. This analysis concludes that the time-domain features of HRV and RRV provide
sufficient information to detect OSA. Other related studies include 28171,

| 3. Other Solutions

In addition to devices that measure biomedical parameters, studies show the application of environmental
sensors/devices such as microphones and cameras to ascertain the presence of sleep apnea. Literature also
shows the application of health profiles to detect apnea and predict the AHI values to classify the severity of apneic

events.

One such technigue for sleep apnea detection is based on smartphones. Camci et al. X8 use sonar
waves generated by smart phones, which give information about chest movements, to detect sleep
apnea. The accuracy of the system was found to be dependent on the subject’s change of sleep
position. Other techniques such as placing a microphone close to the subject’s nose and mouth were
found to be obtrusive and impacting the sleep behavior of the subjects 2229, Another technique
relies on the use of a 3D time-of-flight camera, which records the subject’s respiratory motion 2,
The signals pertaining to respiratory movement of abdominal muscles are analyzed to monitor sleep
stages and detect apnea. Davidovich et al. 22 propose a novel algorithm for sleep apnea screening
with a contact-free system based on a piezo-electric sensor. The setup consisted of a piezo-electric
sensor, which recorded a combination of gross body motion, rib cage movements, and the
cardioballistic effect. The specificity and sensitivity were found to be 89% and 88%, respectively.

Non-wearable techniques for sleep apnea detection have certain advantages and disadvantages when compared
with wearable devices. For example, wearable devices for sleep apnea detection have to be small in form factor
and light-weight, while non-wearable techniques such as BCG-embedded beds or camera based systems do not
have restrictions on their size or form factor. Another characteristic of comparison between wearable and non-
wearable techniques is power consumption. Minimizing power consumption enables the wearable device to be on
battery power for longer durations, which reduces the overhead of charging the devices. Power consumption of
such devices occurs in three activities—sensing, processing, and communication. These three functions have to be
optimized for energy saving to enable the device to be worn for long periods of time without recharging. In contrast,
non-wearable devices can be connected to the main power supply, and hence need not be designed for optimized
power consumption. One significant factor that affects the accuracy of sleep apnea detection in both techniques, is
the placement of the sensors. Wearable devices allow round-the-clock monitoring of parameters since it does not
restrict the parameter collection to a certain geographical region under study. However, non-wearable devices are

sensitive to the sensing range of the devices. Environmental sensor-based systems also sometimes tend to be
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intrusive—for example, placing a microphone close to a subject’s face while sleeping could be uncomfortable for
him/her. Camera-based systems may tend to be expensive and have higher power and bandwidth requirements.
Due to all these aspects, wearable devices may be conducive to at-home sleep monitoring, while non-wearable

techniques may be applied in hospital environments where the mobility of the subjects is more constrained.

There has been research that highlights the significance of including a subject’s health profile in the diagnosis of
sleep apnea and its severity. Mencar et al. (23] use 19 features including heart disease, diabetes, gender, BMI, age,
smoking, hypertension and snoring, to explore methods to classify sleep apnea severity. Classification algorithms
are applied to classify the severity of sleep apnea, and regression methods are applied to predict the AHI values. In
another work, Ustun et al. 24! argue that medical information of subjects would be more suited to diagnose sleep
apnea than real time sleep related symptoms. Features such as age, gender, BMI, presence of hypertension,
history of heart failure, stroke, asthma, smoking, and snoring were used to train the classifiers. Seven classifiers
including variants of Logistic regression, DT, and SVM were compared with a new machine learning model named
SLIM (Supersparse Linear Integer Models). SLIM is a linear classification model for creating medical scoring
systems, and this gave a sensitivity of 64.2% and specificity of 77%. The study supports the use of simple models

with good generalization capabilities, especially for medical applications where datasets are prone to overfitting.

| 4. Discussion and Conclusions

In this study, we briefly summed up the causes and risks associated with sleep apnea, and the drawbacks of the
related diagnostic processes. We outlined the parameters that help detect apneic events. Subsequently, we
examined the application of machine learning in sleep apnea detection, with focus on wearable systems. We
summarized the recent research that demonstrates feature engineering techniques and efficient use of classic
machine learning, deep learning, and sensor/feature fusion algorithms to detect sleep apnea, and in some cases,
classify its severity, using biomedical markers such as ECG, EEG and SPO2. The paper also briefly looked at the
application of environmental sensors and information in subjects’ health profiles to ascertain the presence of sleep

apnea.

From our analysis, an observation is that machine learning algorithms applied to datasets in the literature survey,
produce varying degrees of accuracy. This indicates that the performance of the algorithms depends on various

factors such as:
(i) Data collection modalities

Factors such as type of sensors, their placement, and frequency and sensitivity of measurements, affect the
training of machine learning classifiers. Among the various biomedical parameters that aid in the detection of sleep
apnea, we observe that the most common of them are those from ECG, SPO2, and EEG signals. The drawback of
using ECG is that the signals generated by three leads or more require a resting ECG or an ECG Holter monitor,
which may be restrictive for the subject under study because of the placement of leads. Single lead ECG can be

embedded within wearable devices; however, the accuracy of such devices is less than those with multilead
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devices. Collection of EEG data also requires the subjects to wear a headgear while sleeping, which may cause
inconvenience. SPO2 sensors, such as single lead ECG sensors, can be embedded within wearable devices and,
in combination with the demographic information of subjects, has been proven to provide good results in the
detection of sleep apnea. Environmental sensors may constrain the subjects to a certain area under observation
while sleeping (such as bed-embedded BCG sensors). Some may introduce noise in the data collection, for

example, acoustic sensors are prone to errors from ambient noise.
(ii) Dataset characteristics

Characteristics of data such as its distribution and dataset features, along with the pre-processing that has been
applied to it also influences the efficiency of supervised training techniques. For a classifier to be well-trained, the
dataset it trains on must be balanced. In the case of sleep apnea, it has to be ensured that the number of apneic
events in the dataset are comparable with that of non-apneic events. In the absence of this, the classifier gets
trained for the majority classes and misclassifies the minority classes. Additionally, appropriate data pre-processing

technigues and feature engineering should be performed to fine tune the classifier training.
(iii) Labelling techniques

Training machine learning models for sleep apnea detection using supervised learning techniques, requires
annotation of the records in the sleep dataset. Some of the standards used in sleep stage scoring from sleep study
reports are the Rechtschaffen and Kales standard (R&K) 23 and American Academy of Sleep Medicine (AASM)
(28] |n practice, apneic events are annotated manually by domain experts. The process involves correlation of the
subject’s biomedical and physiological history with the sleep data, while adhering to the guidelines set forth by the
standards. The dependency of annotation on the standards and subjective domain expertise may limit the

generalization capability of the trained model.

The capability of a wearable device or an end-to-end system to store data for analysis, raise alarms on detection of
abnormalities, and generate reports long-term is especially useful in the context of geriatric care homes. Today,
there are commercial devices that synchronize collected data to a smartphone periodically; however, a drawback of
such a system is that at any given time, the device can be paired with only a single smartphone. The ability to
support data collection and analysis at a central location would be especially beneficial in geriatric healthcare,

where elderly people are saved the effort required to access and view their own reports.
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