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Bilaterian animals operate the clusters of Hox genes through a rich repertoire of diverse mechanisms, including,
due to a large set of various non-coding RNAs. Long non-coding RNAs (IncRNAs), which are transcribed from the
sense (coding) DNA strands of Hox clusters, control the work of Hox genes in the cis and trans position, are
involved in the establishment and maintenance of the epigenetic code of Hox loci, and can even serve as a source
of regulatory peptides. which switch cellular energy metabolism. All antisense IncRNAs in human Hox clusters are

therapeutic targets for malignant tumors, and their careful study has profound practical meaning.

long noncoding RNAs INcRNAs antisense NncRNAs Hox genes Hox clusters

| 1. Introduction

A little more than a century has already passed since Calvin Bridges, who worked in the laboratory of Thomas Hunt
Morgan, revealed the new type of mutations in Drosophila melanogaster. Those mutations were localized in

bithotax (bx) locus and resulted in a partial transformation of the halter to the wing.

Edward Lewis proceeded with Bridges’ work and within a few decades he described, in detail, the BX-C complex,
which controls the morphogenesis of thoracic and abdominal segments of flies [2. This is how Hox genes were first
found, the genes which are universal for all bilaterian animals, control their development and play a huge role in

morphological evolution.

Hox genes certainly are the most studied developmental genes to date. Even now, there are more than 500 papers
published every year investigating or discussing their functions. This undying interest in the subject can be
explained by the multiple roles of Hox genes in development. These genes work through the whole embryogenesis
process starting from the earliest steps of development & and until the extreme old age of multicellular animals; the
vertebrates which use Hox genes to control homeostasis, being the perfect example BI4BIE, The same genes
specify the organization of the body plan of the animals from the largest clade—Nephrozoa. At the same time, they
can be easily co-opted into the developmental programs of evolutionarily new structures, such as the photophore

of fireflies [ and hair follicles of mammals &1,
We suggest that the pervasiveness of Hox genes is caused by:

o Their fundamental role in the ground plan formation (this excludes the loss of Hox genes in most bilaterian

animals);
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» The simplicity of DNA-consensus for the binding of Hox homeodomain and the ability of Hox genes to form the

dimers with cofactors to make this consensus more complicated;

» The complex regulation of their transcription.

Figure 1 summarizes the schematic presentations of the known mechanisms of Hox genes’ transcriptional control.
This complicated picture raises a number of issues. For example, it is unclear at which evolutionary step this
regulatory complexity appeared. What could it be used for if it originates from the common ancestor of Nephrozoa?
Which regulatory mechanisms were inherited by modern Bilateria from their common ancestor and which arose
independently in different taxons? Which mechanisms are predetermined by the structure of Hox cluster? Are there
any mechanisms that can underlie the clusteral structure of Hox genes? To solve these fundamental questions, the
several extant monographs do not seem to be sufficient, but it is possible to come closer to an adequate
understanding through analysis of separate regulatory mechanisms. In this review, we intend to discuss the
accumulated data concerning long non-coding RNAs which are transcribed from the sequences of Hox clusters in
the opposite direction, i.e., from the sense (coding) strand. We have focused on these regulatory transcripts
because there are more of them in Hox clusters than sense INncRNAs and because they are better studied. In
addition, the regulatory potential of antisense molecules is higher due to additional options, such as the formation

of duplexes with mRNAs of Hox genes.
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Figure 1. The main pathways for controlling the transcription of Hox genes.

Large arrows indicate Retinoic acid pathway (RA), Sonic Hedgehog pathway (SHH), WNT and FGF pathways.
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The world of regulatory RNAs is huge. Since the accumulation of data on the structure and function of regulatory
RNAs is actively proceeding, even their classification is not yet stable. Traditionally, non-coding RNAs are divided
into short (<200 bp) and long (>200 bp) classes Q. Long non-coding RNAs are the largest and the most
heterogenic class of ncRNAs. These molecules were found in all the organisms studied to date including viruses.
With a few exceptions, they are synthesized by RNA-polymerase I, possess the 5'-cap, polyadenilated and can
exist simultaneously in both poly-A+ and poly-A- forms 29, Their most intriguing characteristic is that in the row of
multicellular animals and plants the percentage of IncRNA coding sequences in genome grows together with the
increasing morphological complexity, i.e., the increasing number of cell types. For example, the sponge
Amphimedon queenslandica (Demospongia) has no more than 15 cell types. The transcriptomic analysis of the
several developmental stages of Amphimedon revealed 2935 IncRNAs, which is ~7.5% of protein-coding
sequences (around 40,000 mRNA) of this sponge 122 There slightly more than 400 cell types in the human
body, around one third of which are comprised by the derivatives of the neural crest [£2l. According to the various
databases, the number of genes coding IncRNAs in humans varies from 140,356 (LncBook:

https://bigd.big.ac.cn/Incbook/index) to 56,946 (LNCipedia: https://Incipedia.org), which, by a significant extent,

exceeds the number of mMRNA coding genes (20,352 according to CHESS: http://ccb.jhu.edu/chess accessed on
15 June 2021).

It is argued that around one third of all the transcripts produced by an eukaryotic cell represent the transcriptional
noise, caused by the imperfection of splicing mechanisms and mistakes in the initiation of transcription 24!, One
can suggest that a huge number of INcRNA which can be found in metazoan transcriptomes is the result of these
mistakes. This seems to be quite a rational view on the issue of huge IncRNA redundancy in comparison with
MRNAS.

However, it is recognized that the level of tissue-specificity, i.e., the preferential transcription in the definite cell
type, at least of one subclass of IncRNAs—intergenic INCRNAs (lincRNAs)—is much higher than among protein-
coding genes 131, Moreover, the large-scale analysis of transcriptional dynamics of IncRNAs in seven vertebrate
species (human, rhesus macaque, mouse, rat, rabbit, opossum and chicken) revealed that during the
developmental process there was a transition from the universal and conservative INcCRNAs to specific and low
conservative ones, which was in good accordance with the expression dynamics of protein-coding developmental

genes [18],

Antisense IncRNAs are synthesized from the coding DNA strand and can overlap the sequences of protein-coding
genes and genes coding other IncRNAs. In the human genome, 44,624 antisense non-coding transcripts were
found (according to LNCipedia). It is generally accepted that around 70% of protein coding genes of mammals
have antisense transcripts, which are synthesized from their own (independent) or divergent (bidirectional)
promotors 7. Those antisense IncRNAs that are fully or partially overlap the exons of protein-coding genes
referred to as Natural Antisense Transcripts (NATS). The first evidence of the existence of the genes coding
NcRNAs in Hox cluster appeared in the last century when the transcriptional activity of the bxd-region of Drospohila
localized 5' from the Ubx gene was analyzed 18, However, the complicated and variable IncRNA-dependent Hox-

regulation is mostly studied in mammals and human cell cultures 191[20121]i22]
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| 2. Antisense LhncRNAs in Mammalian Hox Clusters

Four mammalian Hox clusters are composed of 39 protein-coding genes, which are transcribed in a spatially and
temporally collinear manner in embryonic and definitive tissues excluding the fore- and midbrain. In their 2007
review paper, Denis Duboule classified the clusters of this type as organized 22, These are small clusters (from
100 to 170 kb) in which all the genes are oriented in a similar fashion and as a result are transcribed in one
direction. Hox clusters of mammals are free from any foreign protein-coding genes and almost free from the
repeats, but can code miRNAs and IncRNAs. The fact that there are more non-protein coding transcriptional units
(TUs) in Hox clusters of humans than of mice 24, and that vertebrates possess, in general, more ncRNAs in Hox
clusters than protostomians (though this group is not sufficiently studied) demonstrates the functional importance

and the probable contribution of these transcripts to natural selection.

The first two investigations describing the single IncRNAs of Hox genes were performed in 1995. They
demonstrate the transcription of anti-Hoxd3 22 and anti-Hoxall (now Hoxallos) in mice 28, It turned out that
these molecules are polyadenylated and have several different isoforms [28. |t was shown that their expression
differs from the sense transcripts of sequences they overlap [22l28]. One of the transcripts had distinct nuclear
localization 2. In both cases, antisense RNAs contained the region, which was complementary to the protein-
coding part; thus, they belonged to NATs. Surprisingly, anti-Hoxd3 transcript 23 is still absent in the database,
since both possible candidate asRNAs transcribed from this locus—Hoxd30s1 and Gm38462—do not possess
exons overlapping homeobox and are expressed in the different parts of the embryo compared with the transcript
described in the paper.

These first described cases looked like anecdotal reports. Only ten years later, the true both-way expression traffic
of mammalian Hox clusters was demonstrated by using the available databases (EST and genomic databases)
and new genomic technologies (Tiling array, Chip-Seq, CAGE), focused on global transcriptomic analysis 241271128]
(291 |n these large and technically complicated works, the following patterns were revealed:

First, it turned out that almost the whole of the Hox clusters of humans and mice are transcribed in both the sense
and antisense directions 24271281 Thijs transcription was observed in various embryonic and definitive tissues of
humans and mice, in the human cell line of teratocarcinoma 241271 and in fibroblasts 28 from different locations of
the human adult body. This last model system revealed 407 discrete transcribed regions in four Hox loci. Only 101
of them refer to the exons of Hox genes (28, The main part of the transcribed regions (231) are the intergenic areas
with three-quarters comprising antisense IncRNAs. These IncRNAs are transcribed from individual or divergent
promotors. Second, there are bicystronic and polycystronic transcripts among antisense and sense (including
protein-coding) RNAs [2AB9 These molecules are read from extended parts of the Hox clusters (primary

transcripts up to 30 Kb), so that they overlap or include the exons of two or more genes.

It is worth noting that not only mammals but also crustaceans possess bicystronic Hox transcripts 21, as well as

onychophorans and myriapods [B2I33], Their function is still unclear but it is known that RNAs of this type can be
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processed to form the normal mRNAs B and also the chimeric transcripts that contain the sequence fragments of

two neighboring genes 32133l The presence of transcripts of this kind can consolidate the Hox cluster.

Third, antisense INcCRNAs of vertebrate Hox clusters are expressed following the rule of spatial collinearity and are
often coexpressed with the neighboring protein-coding genes [27[28] Using the exogenous retinoic acid, the
transcription of antisense INcCRNAs was induced in the cells of embryonic teratocarcinoma (NT2D1) alongside
MRNA transcription. In some cases, INcCRNAs were activated even earlier than neighboring Hox genes and could
serve as mediators for this induction 2. Since the initiation of their activation in the experiment was followed by
the liberation of chromatin from repression complexes, we can assume that one of the functions of persisting
antisense IncRNA expression lies in the prevention of transcriptional silencing 2427, |t is important to remember
that a part of antisense IncRNAs does not co-express with the neighboring genes 281, Moreover, RT-PCR or tiling
array methods do not reveal the spatial transcription pattern in the organ or its anlage. For example, the
complementary expression of Hoxall and Hoxallos, visualized in the limb anlage by WMISH [28] would be

revealed as co-expression by the aforementioned methods.

Fourth, INcRNAs of Hox genes possess a certain evolutionary conservatism at the level of primary sequences.
They are less conservative than protein-coding RNAs, but more conservative to various degrees than non-
transcribed parts of the clusters (28l The homologs of HOXB-AS3 are found in different vertebrates from the
elephant shark to humans, but more importantly, there is a homology between the promotors of HOXA-AS3 and
HOXB-ASS3. These genes can probably be considered as ohnologs, as the protein-coding Hox genes from different
clusters. This means that in the single ancestral cluster of the vertebrates, the sequence of this IncRNA already
existed B4, Moreover, a significant number of IncRNAs of Hox genes possess the special type of evolutionary
conservatism—syntenic conservatism [2429[351136] |n, this case, the very position of IncRNAs and their functions are
conserved but not their primary sequence. In terms of the evolutionary distance between Branchiostoma
lanceolatum and Homo sapiens, 16 syntenic homologs were revealed 8. The question about equivalency of these
molecules’ function is still open and each case needs individual analysis due to the specificity of Hox traffic

regulation. We will discuss one of the examples below.

The fact that the new class of molecules contained in Hox clusters is functionally significant was indirectly
confirmed by the presence of small motifs (6-8 nt), which were specific for the different molecules from spatially
variable parts of the body. In other words, IncRNAs from the anterior parts of the body differ by these motifs from
the transcripts of posterior parts. Motifs that were specific for proximal and distal body parts were also found 28],
Moreover, Hox clusters of vertebrates do not practically contain repeats, and the small blocks of SINE, LINE and
LTR can be only found in the loci where neither sense nor antisense transcription occur 22, However, for the full
study of the functional role of INcCRNAs in the processes of development and growth, experimental works on
representational models are needed. It was the case that the majority of data concerning Hox IncRNA functions
were obtained on a limited number of models, mainly human cell cultures. Table 1 and Table 2 contain the 18 most
studied antisense IncRNAs from the four clusters of human Hox genes. One can see that each molecule
possesses multiple functions, most of which were described for pathological processes. In most cases, these

IncRNAs perform transcriptional silencing, the induction of transcription or its modulation through recruiting the
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proteins of chromatin remodeling and transcriptional factors to the target sites. Here, IncRNAs work as scaffolds for
the assembling of the protein complexes, both repressing and activating. Moreover, most of them work as
competing endogenous RNAs (ceRNAs), which scavenge many miRNAs of different types as a sponge. Almost all
of these molecules influence Hox gene expression in cis or trans. Hox genes themselves also regulate the
transcription INcRNAs. For example, it was shown that HOXB13 directly interact with the promotor and induce the

transcription of HOXC-AS3, which further provoke proliferation, migration and invasion of glioblastoma (GBM) cells
37,

Table 1. Antisense IncRNAs from four human Hox clusters. The zones of the overlap of IncRNA exons and RNA

exons from the opposite (template) strand are shown in red.

Type of Position in the Hox
LncRNA Length (nt) LncRNA Cluster
HOXA Cluster
HOTAIRM1 4000; 1052; 783 Linc HOXA1-HOXA2
HOXA-AS2 1048 Linc or NAT HOXA3 ~HOXA4
HOXA-AS3 3918; 3992 Lincor NAT  HOXA4-A5, -A6 -~ HOXA7
Hol)qoglo- 1161 Linc or NAT HOXA9 ~HOXA10
HOX’QH' 1628 Linc or NAT HOXA11-~HOXA13
HOTTIP 4665 Linc or NAT HOXA13-EVX1
HOXB Cluster
HOXB-AS1 797 Linc or NAT HOXB2 ~HOXB3
HOXB-AS2 3594 NAT RNA HOXB3
HOXB-AS3 785; 611; 549; 545; 514; 452; 446; 336 Linc or NAT HOXB4 - B5 — HOXB6
HOXB-AS4 543; 513 Linc HOXB9 ~HOXA13
PRAC2 1193; 560; 518; 503; 448 Linc * HOXB9 ~HOXA13
HOXC Cluster
HOXC-AS1 548 Intronic HOXC9
HOXC-AS2 504 Linc or NAT HOXC9 - HOXC10
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Type of Position in the Hox
LncRNA Length (nt) LncRNA Cluster
HOXC-AS3 368 Linc or NAT HOXC10-HOXC11
HOTAIR 2370; 2364; 2337 Linc HOXC11-HOXC12
Hojglg- 1408 Linc or NAT HOXC9 -
HOXD Cluster
4086; 4037, 4007; 3942; 3923; 3905; 3893; .
HAGLR 3891; 3821 3812: 3794: 3782 Linc or NAT HOXD1 -~HOXD3 e number
. ‘ent rules.
HOXD-AS2 692 Linc or NAT ~ HOXD4 - D8 - D9 ~HOXD10 _
L S . S S ntergenic,

may work in cis- and trans-mode, possess conservatism to a greater or lesser degree and effectively function as
scaffolds. However, the important regulatory mechanisms exist, which can be only performed through the
antisense transcripts. In Table 1, the majority of INcCRNAs are marked as “linc or NAT” because, among the
registered isoforms of one RNA, both types were found. The large part of these molecules indeed have exons that
partially overlap with the exons of Hox genes. Theoretically, this means that NATs can interact with mRNAs of Hox
genes and either stabilize or cleave them to siRNA, thus participating in post-transcriptional silencing. Moreover,
the antisense INncCRNAs can repress the transcription of sense transcripts through the mechanism of interference at

the level of transcriptional complexes 28] This mechanism is realized in the cell nucleus.

Table 2. Antisense IncRNAs from four human Hox clusters and their main functions and targets.

As ncRNA Functions  Mechanism of Work Localization Targets Orthologs Dlsc?r\]/ered Refs
Control of the
cell cycle in the
myeloid cell
lineage; control 136]
of the .
differentiation of Serve as protein E
granulocytes: scaffolds; Nucleus HOXA cluster; ”
HOTAIRM1 control of ' Enhancer; Cvtoplasm NEUROGENIN 2; Chordata 2009 [41)
Sponges big set ytop miR-196b; miR-125b 42]
neuronal - [43]
. o MiRNAs
differentiation [44]
timing; control of
osteogenesis in
dental follicle
stem cells
HOXA-AS2 Promotion of Serve as protein Nucleus c-MYC; EGFR; Primates 2013 [45]
proliferation, scaffolds; Cytoplasm Bax/TRAIL; [46]
migration and Sponges big set EZH2/LSD1; PBX3; [47]
invasion in miRNAs NF-kB; miR-373 (48]
[49]

many types of
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As ncRNA Functions  Mechanism of Work Localization Targets Orthologs Dlsc?r\]/ered Refs
tumors;
regulation EMT;
negative
regulates
endothelium
inflammation
Control of cell
cycle,
proliferation,
migration and
apoptosis in 50
rzzzzgﬁiﬁ:f Stabilization of -
HOXA-AS3 positive HOXA6 m_RNA, Nucleus HOXAG, NF-kB; Homo 2017 [52]
. sponges miR-29¢c Cytoplasm miR-29¢ sapiens (53]
regulation of and mir-455-5
endothelium P 4]
inflammation;
activation the
MEK/ERK
Signaling
Pathway
Cell cycle and
apoptosis
control in -
glioma, lung )
HOXA10- adenocarcinoma 2 Cytoplasm WstopétAhlV\(/)lay' Birds 2018 [f
AS (LAD), oral ' NF-KB ' Mammals b1
cancer and 81
acute myeloid
leukemia (AML)
cells
Control of the
menstrual cycle;
pf(ililfecr)iactliih Serve as protein HOXAL11; TGF-b Rodents
HOXA11- o ’ scaffolds; Nucleus pathway, LATS1; Primates [59]
migration and . . ’ A 2002
AS apoptosis Sponges big set Cytoplasm CyclinD1; CyclinE; Bamboo
; miRNAs CDK4; CDK2 shark
control in many
types of cancer
cells
HOTTIP Control of Activates HOXA Nucleus HOXA7-HOXA13; Rodents 2011 50
5'HOXA genes’ genes through LSD1; EZH2; IL-6; Primates (6]
transcription recruiting of WDR5 un miR-30b Bamboo
during MLL shark

development.
Participation in
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As ncRNA Functions

Mechanism of Work Localization

Targets

Orthologs

Discovered

in

Refs

pathogenesis of
almost all types
of cancer.

Glioblastoma
and endometrial
carcinoma and
multiple
myeloma (MM)
promotion

HOXB-AS1

Potentially
participate in the
development of
atrial fibrillation

HOXB-AS2

Control of
energetic
metabolism in
the cell through
alternating the
isoforms of
pyruvate kinase
M (PKM);
promoting of the
cancer
processes
through
repression of
p53
transcription;
activation of
PI3/AKT
pathway

HOXB-AS3

The sequence is
differentially
methylated in
normal and
pancreatic
cancer cells

HOXB-AS4

Associated with
HOXB-AS5 breast cancer
or (IncRNA) and
PRAC2 protstate cancer
(protein)

ILF3-mediated
activation of HOXB3
and HOXB3
transcription;
stabilization of their
mMRNAs; stabilization
of FUT4 mRNA

Codes the
conservative peptide
of 53 amino acids
long, which is
important for PKM
splicing; Sponges
miRNAs

Encodes 140 aa
nuclear protein

HOXB2; HOXBS;
Wnt pathway; FUT4;
miR-186-5p; miR-
149-3p

Nucleus
Cytoplasm

PKM; DNMT1; p53;
I3K-AKT-mTOR
pathway;
miR-378a-3p

Nucleus
Cytoplasm

I3K-AKT-mTOR
pathway (INcCRNA)

Nucleus
(protein)

Homo
sapiens

Homo
sapiens

Homo
sapiens
Rodents

Homo
sapiens

Artiodactyla
Bats
Colugo
Primates

2019

2020

2017

2018

2003
(protein)
2017
(IncRNA)

BBER

EEEERE

2]
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Discovered

As ncRNA Functions  Mechanism of Work Localization Targets Orthologs in Refs
Cholesterol
homeostasis
participation,
inhibition of. Promotes the [74]
atherosclerosis; iranscrintion and HOXCS6; [75]
HOXC- promotion of P . Nucleus miR-590-3p; c-MYC; Homo [z6]
translation of . 2016
AS1 growth and ) Cytoplasm Whnt pathway; sapiens [77]
metastatic HOXCE; boosts c- miR-590-3
A MYC mRNA P [z8)
formation in
several types of
malignant
tumors
Promotion of
growth and Promote HOXC13 [79]
HOXC- metastatic transcription; can Nucleus HOXC13; ZEBL: Homo (0]
AS? formation in sponge miR-876-5p Cvtoplasm MIR-876-5 sapiens 2019 81]
several types of to affect ZEB1 ytop P P 82]
malignant expression
tumors
Functions under E7
; (81]
the direct control Promgtg the HOXC8: HOXCOY: 2
of HOXBL1. transcription of ’ )
: , HOXC10; HOXC11,; 83]
Promotion of 5'HOXC genes; HOXC12- HOXC13:
HOXC- growth and stabilizes HOXC10 o Homo 4]
. ) Nucleus YBX1; thymidine . 2018 [85]
AS3 metastatic MRNA; can sponge ; ) sapiens
L ; . : kinase 1 (TK1); [86]
formation in miR-3922-5p, impairs .
) FOXM1; miR-96; 87
several types of the maturation of MIR-3922-5
malignant miR-96 P (581
tumors [89]
HOTAIR Reprogramming  Scaffold: A5’ domain Nucleus HOXD cluster (40 Kb Rodents 2007 28
of chromatin of HOTAIR binds Cytoplasm in 5'area) HOXAL; Carnivores (8
State to promote PRC2, whereas a 3' HOXA5; HOXC11, Primates (2o
cancer domain of HOTAIR p53; p27; E- Marsupials ol
metastasis; binds the cadherin; 02
PRC2 and LSD1/CoREST/REST NOTCH1/JAGGED], 23]
PRC2- complex; SNAIL; GLIZ2; (4]
independent Sponging big set Protocadherin 10; 8]
induction of microRNA Wnt pathway; (6]
transcriptional Dozens of miRNAs, ©o
repression. critical for 8
Promotion of proliferation and (29
growth and differentiation control (1007
metastatic (Lo4]
formation in (102]
several types of (03]
malignant (L04]
tumors —

Surprisingly, not all IncRNAs can be positively considered as non-protein coding. The small (less than 100 codons
in length) open reading frames (small open reading frames; smORFs) are found in many IncRNAs. Their functional
coding potential was under debate for a long time, but the peptides were later found in mammals; these were

synthesized from “non-coding” templates. Around a dozen and a half short molecules, from 9 to 250 amino acids
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As ncRNA  Functions Mechanism of Work Localization Targets Orthologs L Refs 'd repeat
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Therefore, Denis Duboule et al. have termed the effects caused by Hotair mutations “homeopathic rather than
homeotic” 24, However, if the deletion of the certain nucleotides of Hotair is performed, the impairment of the
transcription of neighboring protein-coding Hox genes occurs also due to the formation of new IncRNAs—"ghostair”
and “antiHotair’—which form as a result of this deletion. Consequently, the punctual deletion of Hotair in mice can
provoke the formation of a homeotic phenotype that is close to the expected one, taking into account the
conservative function of human and murine Hox orthologues 29241 Thus, the functional conservatism of IncRNAs
cannot be estimated through the mutant phenotype without detailed analysis of mechanisms underlying this
phenotype.
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Another fascinating example of the functional plasticity of IncRNA in one organism is an antisense lIncCRNA
HOTAIRM1 (HOXA Transcript Antisense RNA, Myeloid-Specific 1). The HOTAIRM1 gene is localized between
HOXA1 and HOXAZ2. This IncCRNA is conservative at the level of its position in the cluster. Its syntenic homologs
are found in birds, amphibians, bony fishes and even in lancelet 28, The global studies on the role of Hotairm1 in
the mammalian development were not yet performed but it was shown that it controls the differentiation of
myelopoietic cells and osteogenesis in the descendants of dental follicle stem cells 2E9 |n the cell line NT2-D1
(embryonal pluripotent carcinoma), Hox gene transcription can be induced by retinoic acid (RA). In this cell line,
HOXA1 and HOXA2 are located topologically close to HOXA4, HOXA5 and HOXA6 due to chromatin looping
before the RA induction. After the induction with RA, the transcription of all Hox genes is initiated, but HOTAIRM1

modulates their work in such a manner that they all become collinear at the transcriptional level 152],

The synthesis of two different isoforms of HOTAIRM1 containing three exons—the long non-spliced and the short
spliced ones—is also initiated by RA. The first isoform recruits the protein complex UTX/MLL (H3K27-
demethylase/H3K4 methyltransferase) that initiates euchromatization of HOXA1 and HOXAZ2 loci and, thus, their
transcription. The short HOTAIRM1 isoform interacts with PRC2 and lowers the transcription level of HOXA4,
HOXA5 and HOXAG. This process is followed by reassociation of the proximal and distal parts of the cluster, but
the initial spatial vicinity between HOTAIRM1 gene and other proximal genes allows the short repressing isoforms
to reach the target sites by diffusion. This truly concise and elegant mechanism is not realized in another cell line
NB4 (acute promyelocytic leukemia) with a different chromatin landscape. HOTAIRM1 isoform from NB4 cells
contains two but not three exons and does not control the proximal genes 152, |t was recently discovered that
HOTAIRM1 represses the transcription of NEUROGENIN 2 in Hox-independent manner and, thus, is localized at

the top of regulatory cascade, which regulates the timing of neuronal differentiation 49,

Thus, we can safely assume that IncRNAs of mammalian Hox clusters are numerous, multifunctional and
changeable (Table 2). At the same time, they can be observed in the same regulatory continuum with conservative
Hox genes and both participate in the reciprocal regulation [2411281371152] | this connection, taking into account the
large set of functions that are critical for tissue homeostasis (and probably for development), it is still an enigma as
to how IncRNAs can demonstrate such a high evolutionary plasticity. The most provocative aspect here is the

structural and functional divergence of the human and murine HOTAIR.

We suggest that this evolutionary paradox can be solved if observed from the ontogenetic point of view. The
multiple and variable functions of IncRNAs may be easily delegated. They can be duplicated in the organism by
other components of GRNs and, in case of their dysregulation, this impairment can be compensated during the
developmental process. Local GRNs that control the differentiation of multi-, bi and unipotential stem cells of the
adult organism do not possess the compensatory potential of the complicated multilevel embryonic GRNs. This can

explain the participation of Hox IncRNAs and Hox genes themselves in the tumor formation.

Thus, in the hyperconservative compact mammalian Hox clusters, the molecular machinery of antisense ncRNAs

is internalized, constantly generating changes in their regulation. The range of this variation is defined by the
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stabilizing selection that happens also at the level of the cell populations in the developing embryo. This is a

breeding ground for ontogenetic and evolutionary variability.

3. Antisense LncRNAs in Hox Clusters of Protostomian
Animals

The increasing interest in INCRNAs raised the number of studies in which different insects, including those that did

not belong to the classical models of molecular and genetic research, were used [AB3]153][154][155][156][157] From
these studies, it has emerged that insects possess lesser amounts than vertebrates but still significant repertoires

of these molecules (from 2949 for Anopheles gambiae to 11,810 for Bombyx mori).

There is no surprise that Drosophila is the best studied protostomian animal in the sense of genome structure and
molecular architecture of development. It is worth noting that the first genes that were mapped in the BX-C
complex in the classical paper of E. Lewis in 1978 [l belonged mostly not to the protein-coding sequences but to

the regulatory elements that, nevertheless, were transcribed [281[139],

In a research study performed in 2002, a series of 1-2 Kb Dig-probes was synthesized. These probes overlapped
the intergenic region between abd-A and abd-B genes of Drosophila. This intergenic region of 100 kb length was
called iab (infraabdominal) and contained cis-regulatory elements that control the nearby Hox genes 139 Almost
all the probes used revealed the transcription of unknown LncRNAs in fly embryos. This transcription preceded

Hox mRNA expression and demonstrated spatial collinearity that was similar to mRNA patterns.

Only three probes revealed antisense transcription and, at present, we can identify them with two ncRNAs
presented in FlyBase (http:/flybase.org): DmelNincRNA:iab4 (CR31271) and DmelNincRNA:CR43617. The first

transcript belongs to the specific type of INCRNAs that are processed to become miRNA (mir-iab4). Mature mir-iab4

takes the Ubx gene under negative control 128159 The biological activity of INCRNA iab-4 seems to be limited by
this function. The mir-iab4 sequence is evolutionarily conserved and can be traced in insects, chelicerates and

crustaceans 189, The function of the second transcript remains unclear.

In the modern database FlyBase (http:/flybase.org) dozens of INCRNAs are presented, including those which are
produced from ANTP-C and BX-C regions, but their functions are still unknown. It is worth mentioning that there
are no NATs among these non-coding transcripts, but intronic and intergenic antisense IncRNAs are highly
presented. Since the Hox cluster of D. melanogaster as well as of other drosophilids is disrupted and contains
microinversions, it cannot be regarded as an ancestral cluster of insects 181, One can assume that the repertoire
of Hox-associated INcRNAs is depleted in the fly but is preserved in other species, for example, in the intact Hox

cluster of the beetle Tribolium castaneum.

The work of Shippy et al. (2008) describes the transcriptional activity of the beetle Hox cluster studied by tiling
arrays 1621 |t turned out that the Hox cluster of T. Castaneum produced multiple non-coding transcripts between 0

and 72 developmental hours. However, the authors described only two antisense LncRNAs, one of which is
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transcribed from the intergenic region between Antp and Ubx genes, and the second—from the intron of Ubx gene.
Thus, despite the huge amount of data, the NATs of Hox genes of insects either do not exist or they are not yet

found.

Two research studies were focused on INCRNAs in crustaceans; notably, in both cases, single-molecule real-time
(SMRT) sequencing by PacBio was used. A total of 3958 IncRNAs were found in pacific white shrimp (Litopenaeus
vannamei) 163l This fact demonstrates the essential similarity of hexapods and crustaceans in the number of
IncRNAs. Wan et al. (2019) managed to sequence 23,644 long non-coding RNAs in crab Scylla paramamosain
(Decapoda). However, at the time of the paper’s publication, the genome assembling was not yet finished. The
authors admitted that they were not able to assess the false rate of identified INcRNAs without the fully assembled

genomic data [164],

One gets the impression that despite a significant number of the assembled genomes in the Pancrustacea clade
being of high quality, there is still the lack of data about the functions and even the number of IncRNAs. It is worth
noting that it is the representatives of crustaceans who possess the most compact Hox clusters among all
arthropods—192.8 Kb in Paracyclopina nana (Copepod) and 324.6 Kb in Daphnia magna (Branchiopoda) [162I[166]

Here, as well as in the case of vertebrates, the mechanisms consolidating the cluster exist but are not yet studied.

Myriapoda is a sister group to Pancrustacea. The genomes of the following three myriapods are assembled to
date: Strigamia maritima, Helicorthomorpha holstii and Trigoniulus corallines. These belong to the two large sister
branches—Centipede and Millipede [£671168] The authors did not focus on the analysis of InNcRNAs but clarified the
genomic organization of myriapod Hox clusters and revealed their important ancestral feature. It turned out that
Hox clusters of Strigamia (Centipede) and Trigoniulus (Millipede) are flanked with the orthologs of Eve-skipped
(eve) gene on their 5'-ends. The traces of this ancient synteny were earlier found in chordates and some cnidarian
species. This feature, together with the compactness of Hox clusters (457 Kb from labial to eve in S. maritime),
make the myriapods a prospective model for studying the mechanisms of Hox-regulation, including those that
involve NATs. Myriapods were the first Protostomia for which Hox-associated NATs were found and then studied
(32133 NAT of Ubx (aUbx) of Strigamia is cloned (GenBank: DQ368689.1), occupies the region of 1051 nt and is
complementary to 3'UTR of Ubx mRNA (GenBank: DQ368688.1) within sequences that are at least 226 bases
long. aUbx promotor is localized 3' from the sequence of Ubx gene and closer to 5'-end of Antp gene. aUbx starts
to express earlier and more anterior than its sense transcript, simultaneously with Antp mRNA. In addition, sense

and antisense Ubx patterns look mutually exclusive 321,

In two different myriapod species—the millipede Glomeris marginata and the centipede Lithobius forficatus—aUbx
RNAs were revealed with sense probes. The expression patterns of antisense RNAs were complementary to Ubx
mRNAs, which indicates the high conservation of this regulatory relationship in myriapod clade B3, Outside
myriapods (in onychophora Euperipatoides and spider Cupiennius), no aUbx or any other NATs transcribed from

Hox loci were found, at least by sense probes 23],
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Among spiralian animals—the second protostomian clade—antisense IncRNAs of Hox genes were found in
nereidid annelids (2621701 ysing sense probes, our working group showed the presence of NATs of Hox5 and Hox7
in the postlarval development and regeneration of Alitta virens. Later, we revealed the antisense transcription for
almost all genes of A. virens and Platynereis dumerilii Hox clusters 171, We managed to clone some of these
NATs. The structure of the P. dumerilii Hox cluster is not yet published. The A.virens Hox cluster is studied by
pulsed-field gel electrophoresis 272, According to these data, the cluster is not atomized and does not exceed 2.4
Mb in length. In general, we observe a rich repertoire of antisense patterns for nereidid Hox genes, some of which
are complementary to mRNA patterns and some demonstrate the large overlapping zones between sense and
antisense areas of transcription. NATs of Hox genes are revealed in the developing segmented larva, in growing
and regenerating juvenile worms and, presumably, are present at all stages of the worm'’s life cycle. The functional
role of these transcripts is unclear and needs to be studied in further experiments. From the analysis of the
expression of Avi-antiHox5, it is obvious that the antisense transcript is quickly up-regulated at the amputation site

while Hox5 mRNA gradually vanishes from this area (179,

In general, despite the huge amount of genomic data and detailed analysis of whole genome transcriptional
dynamics performed for model and non-model protostomian animals, little attention is focused on regulatory RNAs,
particularly NATs. The only hope is that “big data” for the most transcriptomes studied by the modern methods

already contain the needed information, which should be included in the analysis.

4. The Implications for the Uprise of Antisense LncRNAS in
Hox Clusters and the Reasons for Their Evolutionary
Maintenance

Thus, Hox-associated antisense IncRNAs were found in mammals, insects, myriapods and nereidid polychaetes
(Figure 2). This regulatory principle may have already existed in the common ancestor of Nephrozoa.
Nevertheless, it does not appear that those molecules were found in all model systems where they were looked for.
There are probably some specific “demands” of natural selection on the functioning of the Hox cluster which

support—or, on the contrary, alleviate—the priority of this regulative mode.
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Figure 2. Hox-associated IncRNAs are found in bilateral animals belonging to three main evolutionary lineages—

Deuterostomia, Lophotrochozoa, and Ecdysozoa. Individual human IncRNAs are listed in Table 1.

We can assume that one of the reasons for the large number of Hox-associated antisense IncRNAs (as well as
sense ones) in mammals and other vertebrates is the necessity for dose compensation of Hox-ohnologs. This
compensation can be realized due to the delicate epigenetic tuning, where the mediators between Hox sequences
and remodeling proteins or transcriptional factors are IncRNAs working in both cis- and trans-positions. However,
this function cannot be primary and the only one since, among the animals possessing one Hox cluster, the

profound antisense transcription was also unraveled (myriapods, annelids).

The complicated regulation of gene functioning demands the extensional regulatory sequences, but it is not true for
mammals. There are probably restrictions of the Hox cluster size caused by the specificity of their early activation
in vertebrate development. During gastrulation, the consecutive liberation of Hox loci from heterochromatized
territories occur from 3' to 5’ ends of the clusters and, thus, the sequential temporal activation of Hox genes is
manifested (173, This process is directly connected to the speed of primary mesenchymal cells’ (PMCs) ingression
through the primary stick 274 The more 5'-Hox genes are activated in the ingressing cells, the slower they are

internalized and the more posterior is the location they obtain in the end. By these means, the spatial Hox code of
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vertebrates is realized through the temporal dynamics of euchromatization, which, in turn, depends on the physical
size of Hox locus. An abundance of intergenic and polycistronic INCRNAs (sense and antisense) in Hox clusters
may function as mediators in the process of early euchromatization and stabilize the local epigenetic states. They

can also keep the cluster from relaxation and disruptions.

It is unknown whether the compact cluster of vertebrate ancestors allowed them to use the system of IncRNAs, or
whether these molecules themselves possessed sufficient functional importance to resist the natural selection
pressure and keep the Hox cluster from relaxation and reorganization. To establish the cause and effect in this
scenario, the INCRNAS’ loss-of-function experiments in vertebrates and comparative data concerning Hox traffic in
the species with variably organized clusters are needed. At this point, it is worth mentioning that animals with
disorganized clusters that include a gap (for example, Drosophila) possess very poor repertoires of INCRNAS in
comparison with vertebrates. In the lancelet, which preserved the integral cluster, the syntenic homolog of
Hotairm1 was found even though it is absent in tunicates and appendicularians with disorganized and atomized

clusters 281, Interestingly, Hotairm1 was not found even in cyclostomes with an integral but relaxed Hox cluster (28
175

Recent studies have revealed a fascinating detail. It turned out that antisense transcription is not an exotic mode of
regulation but a natural means of maintaining the chromatin of functional genes in a dynamic state. By the dynamic
state, the authors mean the high level of histone turnover, i.e., the circulation of histones in the promoter and gene
body 78 |t was shown in yeast studies (S. cerevisiae) that antisense transcription produces dynamic chromatin
[176] |f we imagine that the gene has a final number of configurations at the chromatin level and each of these
configurations corresponds to a certain level of expression, than the dynamic chromatin allows the gene to switch
between these configurations 78], This can be the reason why the genes that change their expression level in
response to stress or environmental changes most commonly possess the antisense transcripts. Moreover,
antisense transcription initiated by bidirectional promotors can spread the regulatory signals from on locus to the
neighboring genes 74, There is one more remarkable detail. The antisense transcription represses poorly
activated sense transcription but if the sense transcription is strong enough, the antisense transcription vanishes
itself 177, This means that the sense transcript will only be transcribed in the presence of the threshold amount of
the activator. This, in turn, predetermines the differential gene activation in the morphogen gradient. Genes

comprised into well-ordered clusters can easily utilize these basic characters for co-regulation.

From this perspective, we can view the antisense transcription in Hox clusters from a different angle. Mammals and
nereidid annelids use Hox genes for their whole life for development, growth, and reparative and physiological
regeneration. This means that they have a constant demand for dynamic chromatin in Hox loci. Centipede
Strigamia forms a finite number of segments in embryogenesis (epimorphic type of development). However, the
basal myriapods form the terminal number of segments only after a few moults have passed (hemianamorphic type
of development). Thus, they also need the postembryonic work of Hox genes (1781, One can probably expect that
antisense Hox IncRNAs will be found in those animals that retain the integral clusters and keep using Hox genes in

postembryonic life.
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