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Diffraction is a phenomenon related to the wave nature of light and arises when a propagating wave comes across an

obstacle. Consequently, the wave can be transformed in amplitude or phase and diffraction occurs. Those parts of the

wavefront avoiding an obstacle form a diffraction pattern after interfering with each other. In this review paper, we have

discussed the topic of non-diffractive beams, explicitly Bessel beams. Such beams provide some resistance to diffraction

and hence are hypothetically a phenomenal alternate to Gaussian beams in several circumstances. Several outstanding

applications are coined to Bessel beams and have been employed in commercial applications. We have discussed

several hot applications based on these magnificent beams such as optical trapping, material processing, free-space

long-distance self-healing beams, optical coherence tomography, superresolution, sharp focusing, polarization

transformation, increased depth of focus, birefringence detection based on astigmatic transformed BB and encryption in

optical communication. According to our knowledge, each topic presented in this entry is justifiably explained.

Keywords: optical trapping ; material processing ; free-space long-distance self-healing beams ; optical coherence

tomography ; superresolution ; sharp focusing and polarization transformation ; depth of focus

1. Introduction

In 1987, BBs were first studied by Durnin  and have been widely employed in applications related to both optics  and

acoustics . In acoustics, BBs are generally used in applications such as ultrasound imaging systems . Their

extended DOF and slender beam-width provide a precise scanning of the transmitted beam, whereas their self-recovering

properties contribute toward extraordinary robustness to tissue scattering. Moreover, its diffraction-free feature provides a

perpetual deep imaging resolution. The diffraction-free self-healing features of the BB permits it to penetrate deep into the

volume of a sample, resist against refractions in chaotic environments, and provides an axial resolution as compared to

that of GBs. The fields, formed from coherent mixtures of BBs, reveal a more than ten-fold rise in their undistorted

penetration to diffraction-limited beams. Recently, vortex beams, to be specific, BBs, have gathered a lot of interest

because of their distinctive properties for particle trapping , particle handling/rotation applications  or

acoustic radiation force strategies in liquids . BBs have also been employed in photopolymerization  as well as in

material processing . However, their prospects for high-throughput 3D printing have not been effusively investigated.

2. Optical Trapping with BBs

The techniques of tweezing and optical trapping are established on the forces that emerge as a result of the rule of

momentum preservation in the reflection, refraction, and absorption of the laser beam at the particle . For effective

optical handling, i.e., consistent microparticles trapping, a high gradient of the optical power density is required. For

instance, a sharply focused laser light beam is essential to trap the microparticle. This considerably shrinks the working

area owing to diffraction, tighter focusing outcomes in faster radiation divergence, and the issue cannot be solved

regarding the Gaussian optics. Nevertheless, Durnin  has demonstrated in his remarkable work that the diffractive

divergence can be practically removed with a special class of non-diffracting light fields known as BBs. Practically

speaking, BBs display a limited propagation length, which is dependent on the width of the original collimated beam. As

the BBs preserve their focus throughout the way, the placement of the manipulated object can be considerably altered,

hence allowing practical flexible micromanipulation systems. Additionally, the employment of BBs unveils novel prospects

in micro-fabrication , manipulation of micro-machines  and numerous “lab-on-a-chip” applications .

Optical traps based on focused BBs offer highly superior capabilities for manipulation of individual glass beads in the

three spatial directions in comparison with standard optical tweezers based on focused GB . Interesting possibilities for

the simultaneous trapping and rotating of various types of dielectric particles (with high and low refractive indexes) provide

multi-ringed vortex beams . The angular momentum density of BBs is similar to that of multi-ringed LG beams .

However, high-order BBs are easier to generate experimentally .
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The field of optical trapping has grown into an essential phenomenon in the biological examination, cold atom physics,

and genetics . It has swiftly bee established from its first verification by Ashkin in the 1970s . Regardless of its

extensive implementation, the optical trapping of airborne particles employing a single-beam gradient-force was not

verified until 1997 . Even nowadays, most of the laser tweezer operations are being used to trap fairly translucent

specks in a liquid. A particle trapping via a single laser beam in the air is a more challenging task than in a liquid medium,

as the optical trap should be robust to conquer gravity and disruption in the air. Moreover, as opposed to a particle in a

liquid medium, a particle in the air has a higher relative refractive index, which induces a sturdy scattering force that tends

to disrupt the trap . Nevertheless, for particle delivery strategies, the potentiality to trap airborne particles is essential

as well as developing aerosol classification methods that incorporate optical trapping with examination practices, for

instance, Raman spectroscopy .

Consequently, significant attention has been given to develop novel methods to capture airborne particles utilizing either

the photophoretic force or the radiative pressure force. In recent times, the photophoretic force has been used to permit

optical trapping of airborne particles with absorbing properties. Several beam shapes such as vortex beams , bottle

beams , and hollow cones produced via a single beam , tapered rings , two counter-propagating beams  and

optical lattices , among others, have been employed. In , the particles are trapped in the low-intensity

area, which is contrasted to laser tweezers where the gradient force traps the particles near a laser beam’s high-intensity

focal point. As several photophoretic traps are only successful for particles with a specific geometry , the morphology of

the absorbing particles poses additional technical hitches. Nevertheless, some applications include the ability to capture

the particles irrespective of their construction and absorption.

An interesting method is proposed in , where a single formed laser beam is used to form a region of low light intensity

for photophoretic trapping of absorbing particles but minimizing the dispersion force near the focal point at the same time.

As a result, radiative pressure found that the trapping of translucent particles is facilitated as shown in Figure 1a–d.

Besides, this low dispersion force permits airborne particles to be trapped by radiative pressure-based trapping via

relatively low numerical aperture optics. A comparable method has lately been demonstrated to allow optical trapping of

high relative refractive index non-absorbing particles utilized to trap airborne aerosol droplets .

Figure 1. (a) Illustration of the optical trapping setup. The diameter of an expanded laser beam is managed with a tunable

iris before travelling through the two axicons to form a collimated hollow beam. The aspheric lens creates a hollow conical

focus within a glass chamber where airborne particles are trapped, adapted with permission from . (b) Calculated

intensity profile near the focal spot, adapted with permission from . (c) Image of the conical focal region produced inside

the chamber, adapted with permission from . (d) Image of a spore captured in the air close to the focal point, adapted

with permission from .

Due to the transfer of momentum from photons to particles, the radiative pressure force, the gradient force and the

scattering force produced from a single laser beam emerges. Regardless of the realization of optical tweezers in

maneuvering particles in the fluid, optical traps based on radiative pressure utilizing a single laser beam are still not

suitable for grabbing airborne particles. Bearing in mind the radiative pressure force as an amalgamation of a gradient

force and a scattering force, this problem can be solved. The gradient force drags a particle close to the focus of the laser

beam into the high-intensity region at the focus, ensuring the restoring force is mandatory to catch a particle. Instead, the

scattering force moves the particle in the direction of the propagation of light and off-limits the reinstating force needed. In

general, optical trapping is only probable when the gradient force overpowers the dispersion force . Airborne particle

trapping is a challenging task due to the high refractive index of a particle in the air comparative to the ambient medium

results in a sturdy scattering force. To form a robust gradient force to trap airborne particles, high numerical aperture

optics (typically NA > 0.9) are obligatory . In principle, by utilizing a counter-propagating beam configuration, the

scattering force can be concealed . However, an accurate orientation is required, which is practically not possible in

many applications. If a laser light falls on absorbing airborne particles, a portion of the light is absorbed and transformed

into heat. Consequently, an interplay between a non-uniformly heat-emitting particle and the ambient gas molecules leads

to the photophoretic force. As a result, absorbing airborne particles are captured by the photophoretic force. For instance,

if an absorbing airborne particle is hit by a light from one side, due to impact with the hot part of the particle, the gas
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molecules on the elevated temperature side of the particle will have greater velocities, imposing a net force that moves

the particle to its cold side. The photophoretic force can be ~5 orders of magnitude more robust than the gradient force for

an intensely absorbing particle, usually employed in optical tweezers .

3. Material Processing via Ultrafast BBs

These days, micro- and nano-technologies rely on the growth of detailed and manageable manufacturing tools that are

capable of structuring materials with full precision and minimum collateral loss. In a range of applications, from

entertainment to medicine, lasers have proven to be flexible instruments over the years. The individual usage of this

system is dependent on different parameters of the radiation emitted, such as wavelength, energy, and pulse duration.

When considering some applications, the beam structure is essential . A typical GB is appropriate for some of

them. The ultra-short laser processing technique has grown into a vital technology capable of delivering fundamental

processing skills well into the size of the nanoscale . This counts on incomparable material processing capabilities

through nonlinear excitation and inadequate thermal diffusion, resulting in high-end applications where energy localization

in space and time by ultrashort pulses is important. Novel models of laser material processing are developed based on

the spatiotemporal design of irradiation rendering to the material response to optimize the structuring process concerning

quality and scale . To synergistically associate irradiation and material reaction to energy load, an advanced

processing strategy involves a detailed understanding of the irradiation and material transformation method.

For material processing applications in ultrafast modes, a new class of ultrafast laser beams has recently emerged with

the potential to achieve processing precision beyond the diffraction limit, deep into the nanoscale domain. This relies on

non-diffractive concepts, especially the Bessel-Gauss beam , where non-diffractive propagation can be used to design

the multi-dimensional interaction segment. In transparent materials, the ability of these Bessel-Gauss beams is entirely

utilizable, with an energy gap larger than photon energy. BBs are helpful in Bragg grating inscription , microchannel

forming  and photopolymerization  due to an elongated focal area. BBs have a ring-shaped spatial spectrum. It is

conceivable to attain Mathieu beams with elliptical intensity distribution by modifying the phase and amplitude of the BB.

For instance, the elliptical beam structure has been shown to cause directional glass cracking. Zeroth and higher-order

BBs are among the most distinguished non-diffracting beams and can be comprehended utilizing diffractive holograms or

by focusing Laguerre GBs via conical prisms (axicons).

In , a novel method is developed for the realization of superimposed complex BB vortices of different orders, single and

superimposed Mathieu beams of different topologies, as well as parabolic non-diffracting beams. Furthermore, their

amplitudes and phases are controlled in the focal region independently to assist the creation of complex patterns not only

in the transverse plane but also along the focal line. The experimental verification using a conical prism together with a

geometrical phase element is presented for the transparent materials. In  the higher-order vector BBs are produced for

transparent material processing applications.

Three-dimensional integrated circuits are an enticing option to replace standard two-dimensional ones as high-efficiency,

low power exhaustion and miniaturized foot-print microelectronic devices . One of the primary enduring problems,

however, is the processing of high-aspect-ratio through-silicon vias (TSVs), which is a critical technology for the assembly

of three-dimensional silicon integrated circuits. As a simple and environmentally friendly substitute with less manufacturing

stages due to the exclusion of photolithography, TSV manufacturing through direct laser drilling has been suggested. This

has been demonstrated with the production of 20 μm diameter holes in a 250 μm thick silicon substrate employing

nanosecond UV laser percussion . However, for the assembly of three-dimensional silicon integrated circuits, the deep

drilling of holes smaller than 10 μm in diameter remains a major future challenge. Ultrafast laser treatment has recently

been shown to be a desirable method for material processing, as it facilitates sub-diffraction-limit processing with heat-

affected zone elimination . High-quality cutting has been successfully checked for planar silicon elements with 780 nm

femtosecond lasers . Furthermore, in many important research and engineering applications, fast speed and high

aspect ratio drilling of through-holes in different materials utilizing ultrafast laser processing have become an attention-

grabbing theme. In different silica glasses, femtosecond BBs have been employed to create microstructures with aspect

ratios of up to 10 10 , without requiring sample transformation due to the elongated field depth.

In , TSVs are fabricated by using femtosecond BBs with wavelength tuning of 400 nm to 2400 nm. The manufacture of

fine TSVs utilizing a 1.5 μm femtosecond BB is demonstrated in . A Bessel femtosecond beam is customized via a

specifically fabricated binary phase plate to remove the extreme ablation brought by the sidelobes of a traditional BB.

Three separate forms of femtosecond laser beams such as a Gaussian beam (GB), a conventional BB (CBB) and a

tailored BB (TBB) were used to determine the theory of the suggested method as shown in Figure 2a–c. It is established

that the customized femtosecond BB (without sidelobe destruction) can be employed to form a two-dimensional periodic

arrangement of ~10 μm TSVs on a silicon substrate of thickness 100 μm, indicating a possible use in the three-
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dimensional assembly of three-dimensional silicon integrated circuits. Two-dimensional profiles of CBB and TBB in the x-y

plane together with the on-axis intensity distributions (orange curve) are experimentally measured as displayed in Figure

2d,e, respectively. The experimentally obtained transverse intensity distributions of the CBB and TBB at z = z  are

presented in Figure 2f,g, respectively, together with a charged coupled device taken pictures of the particular beams in the

insets. Figure 2h–j illustrate the SEM pictures of the TSVs formed in 50 μm thick samples employing the GB, CBB and

TBB, respectively.

Figure 2. Diagram of the beams generation setup and intensity profiles for, (a) GB, (b) CBB and (c) TBB. Experimentally

measured two-dimensional profiles in the x-y plane in cooperation with the on-axis intensity distribution (Orange curve) of,

(d) CBB and (e) TBB. Measured transverse intensity distributions at z = z  along the CCD captured images of (f) CBB

and (g) TBB. SEM images of the cross-sectional view of TSVs manufactured silicon substrate using (h) GB, (i) CBB and

(j) TBB. Adapted with permission from .

4. Free-Space long-Distance Self-Healing BBs

In addition to the non-diffractive feature, BBs are self-healing which means that they have a self-reconstruction ability after

a hurdle comes across their transmission path . The intensity arrangement at z and z + δ is formed by different sections

of the crossing planar beams as shown in Figure 3. This property comes from the selective constructive interference

occurring between multiple coherent plane waves propagating at an equal angle concerning the optical axis. The

redevelopment distance of the beam relies on the size of the hurdle and the angle defining the conical superposition of the

planar beams. Consequently, BBs are usually more prone to dispersion than most other traditional Gaussian beams. Due

to the unusual non-diffractive and self-recovery properties, BBs have gathered particular attention in biomedical physics,

laser processing and metrology .

Figure 3. Self-healing features of an axicon-produced BB: an obstacle located in the center of the Bessel region blocks

the beam for the smallest distance Z , the Bessel field reconstructs after travelling for some distance. The beam profiles

before and after the obstacle are also shown. Inspired by .
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A novel method for creating long-distance self-recovering BBs generated by an annular lens and a 4f-configuration

spherical lens is stated in . This shows the diffraction-free light evolution of a zeroth-order BBs over several meters and

addresses the available scaling prospects that exceed present technologies. Additionally, it has been shown that this

setup can be modified to generate BB superpositions, realizing the longest optical conveyor beam and helicon beam. Last

but not least, the self-healing properties of the beams are verified concerning robust opaque and transparent scatterers,

which underscores the pronounced perspective of this novel approach .

Underwater wireless communication is supposed to have high data rates to relay big data over several meters via a

proper wavelength. It has already gained more and more recognition with a massive rise in underwater applications, for

instance, unmanned underwater vehicles, submarines and sensors in the oceanic environment , among others.

The optical turbulence is primarily caused by variations in temperature and salinity in underwater environments, such as in

oceans. The standard of communication of the orbital angular momentum (OAM)-based underwater wireless

communication system has been seriously impaired by this turbulence . A hypothetical analysis of the effect of

temperature and salinity variations on the typical strength of the Gaussian Schell-model vortex beams in the turbulent

ocean has shown that partially coherent beams have a more effective resistance to turbulence than full coherent

beams . The transmission of partially coherent Laguerre-GBs in the tempestuous ocean is studied in .

Furthermore, the influence of the ocean instabilities on the oceanic OAM-based underwater wireless communication

system’s channel capacity has also been observed in . In  [126] the statistical characteristics of the vortex beams

such as the power, polarization, and coherence travelling in oceanic turbulence are theoretically studied.

Vortex beams bearing OAM with helical phase fronts have been commonly used as beam sources to mitigate the

turbulence effect on any optical vortex . A Bessel-Gaussian (BG) beam is an imperative part of the pseudo-non

diffraction vortex beams family. In the case of blockades, BG beams can heal themselves, which is an important feature

for optical communications based on the line-of-sight operations . Consequently, for the OAM-based underwater

communication systems , the non-diffraction and self-recovery properties of BG beams make them a valuable

commodity. The transmission characteristics of BG beams in the free space environment was explored  and the non-

obstruction characteristics of BG beams in a free-space optical communication system were studied in .

An experimental study of the underwater transmission and self-recovering properties of BG beams has recently been

provided in . A GB with a wavelength of 532 nm is transmitted from a laser diode and then a neutral density filter (NDF)

is employed to reduce the intensity of the GB. The GB matches its polarization to the optimized working polarization of the

selected polarization-sensitive spatial light modulator (SLM) after passing through the polarizer (Pol.) and a half-wave

plate (HWP). When the polarized GB is illuminated on an SLM, the desired BG mode is generated, where the special

phase hologram grating is revealed on the liquid crystal screen of the SLM. The BG beam carrying the OAM mode is then

transferred through a water tank simulating the underwater environment. A rectangular water tank of one meter in length

was used to replicate the underwater atmosphere. The temperature variations were regulated by a heater within the

container, and salinity variations were accompanied by adding different salt bulks in the water. The experimental setup to

analyze the BG beam properties underwater is shown in Figure 4a, whereas the recorded beam profiles at the receiver

are shown in Figure 4b. For more detailed information, discuss .
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Figure 4. (a) The investigational arrangement for examining BG beam properties in the underwater situation. (b) The

influence of underwater optical turbulence on the transmission of BG beam versus free space atmosphere. Adapted with

permission from .

5. BB for Optical Coherence Tomography

Optical coherence tomography (OCT) is an imaging process that offers in situ, non-invasive, high resolution, cross-

sectional pictures of the biological tissues. Given the depth of penetration of a light beam into biological tissue,

endoscopic probes are needed to examine the conditions of wall linings inside the organs such as the liver, stomach, lung,

colon and wider arteries within the body. Various types of endoscopic OCT systems have been developed after the first

endoscopic applications of OCT in 1996 . Traditional GBs are currently used in endoscopic probes. Some are relocated

to the targeted site by moving a wire backwards and forward in and out of the body to steer the catheter. These probe

types work at the low numerical aperture and have a lateral resolution of ~20 μm. Some probes use higher numerical

aperture optics; nevertheless, they are limited to the smaller DOF. A fine focus modification is needed for these probes

which cannot be accomplished by wire adjustment. A gradient index (GRIN) lens rod-based probe was then demonstrated

to focus on targeted points in a sample by shifting a stage out of the body . Nevertheless, some endoscopic applications

are constrained by the nonflexible rod. The growth of elongated DOF imaging arrangements is therefore an active

research area of OCT . Several methods have been applied, such as the Swept-source, time and spectral-domain OCT.

Of these methods, the spectral-domain is favored over others, since it is simple to implement and does not require a

complex structure. Initially, the OCT system was arranged only in free optics, but the advent of optical fiber improves the

versatility of the system and paves the way for a new area of operation . In OCT, the sample beam interferes with the

reference beam to produce interference spectra that are further analyzed by the dedicated sample imaging tools. OCT

may be achieved by either dual-path or a common-path interferometry techniques. The later methodology can solve the

problems of polarization mismatch, group velocity dispersion and ambience vibration. The common path configuration

eliminates device and computational complexity since there is no need for extra modules and algorithms to compensate

for dispersion.

Imaging based on BB, produced by axicon optics, differs from GB imaging in that it allows the focusing range to be

extended without losing resolution . However, the trade-off is a reduction in the illumination and collection efficiency.

OCT employing BB has become a trend to benefit from a long DOF and tighter spot size. Bessel beams for

illumination/detection were used to break the limit of focus range and transversal resolution given by the GB profile

. The use of axicon optics in time-domain OCT was originally considered by Ding et al. .   Lately, a non-dual path

imaging scheme for imaging of biological samples has been suggested employing Fourier-domain OCT (FD-OCT) . A

custom-made micro-optic axicon is used to produce a BB to lighten and image in biological samples using spectral-

domain OCT (SD-OCT) . Concerning the GB, BB concurrently produces a high DOF and a tight focus point. It is not

possible to produce perfect BB, but the GB can be converted into a BB structure known as a Bessel-Gauss beam and is

often referred to as a BB. Several methods are discussed to transform the standard GB to BB. Traditionally, the axicon
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lens may be the best alternative for the transformation of the beam. A lot of impressive work has been performed on the

generation of BB via the axicon lens . However, BB axicon lens construction uses free optics, which are not

appropriate for applications where there is a need for a small central spot size.

To eliminate group velocity dispersion and polarization incompatibility between the reference and the sample arm,

common-path optical coherence tomography (CP-OCT) is used so that both arms share the same physical path. Current

CP-OCT implementations usually involve one to incorporate an additional cover glass into the beam path of the sample

arm to provide a reference signal. This step is further reduced by making direct use of the back-reflected signal, provided

by the conical lens-tip fiber, as a reference signal as shown in Figure 5a . The conical lens, which is directly

manufactured by a simple selective-chemical etching process on the optical fiber tip (inset of Figure 8a), performs two

functions: (1) it can be used as an imaging lens; (2) as the self-aligning reference plane.

Researchers have been involved in producing such axicon structures within the optical fiber such that they can be used

for imaging and sensing applications. Considerable work is being conducted on BB construction using optical fibers and

deep-sealed negative axicons (DSNAs) . The DSNA is manufactured by standard chemical etching in hydrofluoric

acid (HF) at the tip of the single-mode highly doped photosensitive optical fiber and produces BB . A tomography

methodology for fluorescence microscopy scanning is introduced in , which enables the volume image to be captured

in a single frame scan. Volumes are photographed by concurrently recording four independent projections at various

angles using temporally multiplexed, tilted BBs.

An FD-OCT method is used to exhibit the effectiveness of this method upon biological tissue. An in-fiber CP-OCT

technique can prove to be potentially useful in endoscopic OCT imaging. The usefulness of employing axicon micro-optics

has been solely established by imaging a biological sample, precisely an African frog tadpole, at different places attained

with an incident power of 25 mW and an irradiation time of 50 μs as shown in Figure5b The detailed study on SD-OCT

can be found here .

Figure 5. (a) Illustration of a light field travelling from the fiber to the sample and back. The inset displays the SEM image

of the fiber probe where the conical microlens can be seen. Adapted with permission from , (b) 1 mm × 1 mm SD-OCT

images of an African from tadpole located at various d values acquired using a 600 μm effective axicon micro-optic lens

(top row) and a 0.037 NA conventional lens (bottom row). Adapted with permission from .
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