

Hepatitis B Virus-Related Cryoglobulinemic Vasculitis

Subjects: [Virology](#)

Contributor: Luca Quartuccio

Hepatitis B virus (HBV) chronic infection causes progressive liver damage, although about 20% of patients develop extrahepatic manifestations such as cryoglobulinemic vasculitis (CV). Clinical manifestations range from mild to moderate (purpura, asthenia, arthralgia) to severe (leg ulcers, peripheral neuropathy, glomerulonephritis, non-Hodgkin lymphoma). Treatment is based on persistent viral clearance.

[cryoglobulinemia](#)

[vasculitis](#)

[hepatitis B virus](#)

[entecavir](#)

[tenofovir](#)

1. Introduction

Hepatitis B virus (HBV) infection is still a major global health problem with about 350 million chronically infected subjects worldwide. HBV infection can cause acute or fulminant hepatitis as well as chronic hepatitis evolving into cirrhosis and hepatocellular carcinoma, and it is responsible for 887,000 deaths every year [\[1\]](#). About 20% of HBV patients may develop extrahepatic manifestations, such as polyarteritis nodosa and glomerulonephritis, dermatitis, arthralgia, arthritis, aplastic anemia and cryoglobulinemic vasculitis (CV) [\[2\]](#).

In the past, CV was termed “essential” due to its unknown etiology. After discovering hepatitis C virus (HCV) in 1989, it became clear that most CV cases were HCV positive [\[3\]](#)[\[4\]](#).

CV can be described as an immune complex-mediated systemic vasculitis involving medium/small-size vessels. It is characterized by the presence, in the serum, of immunoglobulins able to precipitate when temperature goes below 37 °C [\[5\]](#). According to Brouet and colleagues [\[6\]](#), cryoglobulinemias are classified into three types: I, II, and III [\[7\]](#). In type I, the cryoglobulins are formed by monoclonal immunoglobulins, IgM or IgG only, and it is associated with lymphoproliferative disorders (multiple myeloma, Waldenstrom’s disease, or non-Hodgkin’s lymphoma, NHL). In types II and III, called mixed cryoglobulinemia (MC), the cryoglobulins are immunocomplexes composed by the antigen and monoclonal IgMs or polyclonal IgGs. The IgMs are usually endowed with rheumatoid factor (RF) activity against polyclonal IgGs. MC is strongly associated with HCV infection (80–90%) [\[8\]](#), but a fraction of cases is HCV-negative (10–20%), being secondary to other viral infections (HBV and HIV are the most common), or to systemic autoimmune diseases (primary Sjögren’s syndrome, systemic lupus erythematosus, and rheumatoid arthritis), or finally to chronic lymphoproliferative disorders [\[9\]](#)[\[10\]](#)[\[11\]](#)[\[12\]](#)[\[13\]](#)[\[14\]](#)[\[15\]](#)[\[16\]](#)[\[17\]](#)[\[18\]](#)[\[19\]](#)[\[20\]](#). MC can occur in 0.5 to 5.5% of HBV patients [\[21\]](#)[\[22\]](#)[\[23\]](#)[\[24\]](#)[\[25\]](#). The potential role of HBV, as MC etiologic agent, was firstly suggested by Levo and colleagues [\[26\]](#) more than 40 years ago. Monti and colleagues [\[24\]](#) retrospectively analyzed a cohort of 717 subjects with essential cryoglobulinemia followed by the Italian Group for the Study of Cryoglobulinemia

(GISC). HBsAg data were available only for 400 patients, and the authors reported a 5.5% prevalence of HBsAg positivity. Subsequently, Ferri and colleagues [23] evaluated 231 patients with MC, observing a 1.8% prevalence of HBsAg. In a recent study by Mazzaro and colleagues [27], the prevalence of HBsAg positivity in a group of 246 patients with MC was 4.5%. Furthermore, no correlation was found between MC and different HBV genotypes [2].

1.1. Main Clinical Manifestations of HBV-Associated CV

Since few clinical and epidemiological studies have suggested the causal relationship between HBV and MC (Table 1) [28][29][30], large population studies regarding HBV-related MC are lacking in the literature.

Table 1. Summary of the clinical-serological and virological characteristics reported by the main studies on HBV-related CV.

	First Author, Year, Ref.		
	Boglione et al. 2015 [28]	Mazzaro et al. 2016 [29]	Li et al. (2017) [30]
Number of Patients	7	17	12
Female/male	3/4	10/7	4/8
Age/years, median (range)	60 (49–65)	56 (45–70)	47(29–68)
Clinical Features			
Purpura, n (%)	3 (43)	17 (100)	7 (58)
Arthralgias, n (%)	0	12 (71)	3 (25)
Raynaud's phenomenon, n (%)	0	3 (14)	0
Sicca Syndrome, n (%)	0	2 (9)	0
Skin Ulcers, n (%)	2 (29)	1 (6)	0
Peripheral neuropathy, n (%)	4 (57)	5 (29)	2 (17)
Glomerulonephritis, n (%)	0	3 (18)	12 (100)
Gastrointestinal vasculitis, n (%)	0	0	2 (17)
Chronic hepatitis, n (%)	NA	8 (47)	NA
Cirrhosis, n (%)	NA	5 (29)	NA
Biochemical and Virological Features			
MC type II/type III	NA	15/2	3/9

	First Author, Year, Ref.		
	Boglione et al. 2015 [28]	Mazzaro et al. 2016 [29]	Li et al. (2017) [30]
Cryocrit %, median (range)	3.4 (2.5–6)	3 (1–14)	NA
Rheumatoid Factor IU/mL, median (range)	NA	119 (88–5850)	694 (67–2730)
C4 mg/dl, median (range)	NA	8.0 (4–31)	6.0
ALT IU/mL, median (range)	79 (68–105)	71 (39–82)	44 (10–102)
Creatinine mg/dl, median (range)	NA	1.0 (0.7–1.2)	2.8 (0.0–9.8)
HBV-DNA positive, n (%)	7 (100)	17 (100)	12 (100)
HBsAg positive, n (%)	7 (100)	17 (100) [31]	10 (83)

characterized by bilateral and symmetric joint pain, non-deforming, and mainly involve knees and hands. Skin ulcers may occur in 10–30% of cases. Sicca syndrome and Raynaud's phenomenon have been reported in a few patients. Neurologic manifestations range from distal sensory polyneuropathy to sensory–motor polyneuropathy in 20–60% of cases. Peripheral neuropathy presents with leg pain and symmetric burning paresthesia. Motor deficit is irregular and mainly affects the lower limbs, appearing either a few months after sensory symptoms or simultaneously. Severe clinical symptoms such as glomerulonephritis, progressive peripheral neuropathy, gastrointestinal vasculitis, and NHL may occur in a few cases [22][28][29][30].

Similar to HCV-related CV, the most frequent kidney manifestation is type I membrano-proliferative glomerulonephritis (MPGN). A very common aspect of HBV-MPGN is nephrotic-range proteinuria and microscopic hematuria, often with evidence of renal insufficiency. In a recent study on 12 patients affected by HBV-MPGN [30], proteinuria was present with a nephrotic range in all of them, and 9 (75%) patients had impaired renal function. Microscopic hematuria was found in all patients, and gross hematuria in three.

The histological picture found in MPGN has revealed diffuse endocapillary proliferation, thickening, and double-contour appearance of the glomerular basement membrane. The glomeruli were infiltrated by many monocytes and polymorph nuclear cells. The capillary lumen showed PAS-positive hyaline thrombi. The distinctive histological features are markedly hypercellular and endoluminal thrombi due to the massive precipitation of cryoglobulins. Immune complexes comprising HBV antigens were also detected in some cases [30]. Overall, kidney involvement emerged as an unfavorable prognostic factor [32][33].

1.2. Therapeutic Management of HBV-Related CV

HBV-associated CV is considered a rare disease and, consequently, few data are available regarding the clinical management, because large cohort studies are lacking. Furthermore, the implementation of universal HBV vaccination programs is successfully decreasing HBV infection prevalence worldwide [34], thus making HBV-associated CV progressively less frequent.

Guidelines for treatment of HBV-related CV have not been published yet, but, similarly to HCV-related CV, the treatment is based on the following four targeting approaches: (1) antiviral therapy; (2) B-cell depleting therapy; (3) immunosuppressive drugs; and (4) anti-inflammatory drugs.

2. Antiviral Therapy

2.1. Oral Nucleot(s)ide Analogues (NAs)

Eradication or strong and effective suppression of HBV chronic infection by NAs is the first-line treatment for HBV-related CV. [Table 2](#) summarizes the main studies on the treatment of HBV-related CV with NAs.

Table 2. Nucleotide analogues (NAs) therapy in patients with HBV-related cryoglobulinemic vasculitis.

Author, Year	Pts n.	Antiviral Agent, Dose (mg/day)	Other Treatment, Duration, (n) Weeks (w), (n)	Negative HBV-DNA	Laboratory Features	Clinical Manifestations, (n)	Immune Response/ ALT Response	Cryoglobulinemic Vasculitis Response,(n)
Before Treatment								
Cakir et al. 2006 [35]	1	Lamivudine 100 mg/day = 76 w; Adefovir 10 mg/day = 108 w		100%	Cryocrit: Pos; RF:1110; C4:7; ALT: 125;	Purpura, Fatigue, Arthralgia, Cirrhosis	Cryocrit: Neg RF: normal ALT: normal	CR: Purpura; Fatigue Arthralgias;
Kawakami et al. 2008 [36]	1	Entecavir 0.5 mg/day		100%	Cryocrit: Pos	Purpura, Neuropathy,	Cryocrit: Neg	CR: purpura, Neuropathy
Enomoto et al. 2008 [37]	1	Entecavir 0.5 mg/day = 20 w		100%	Cryocrit: Pos	Purpura, Chronic hepatitis	Cryocrit: Neg ALT: normal	CR: Purpura
Conca et al. 2009 [38]	1	Lamivudine 100mg/day = 4 w; Lamivudine 50 mg/day = 232 w		100%	Cryocrit: 7; RF: 876; C4:0.4; ALT:247	Purpura, Cirrhosis	Cryocrit: Neg ALT: normal	CR: Purpura
D'Amico et al. 2013 [39]	2	Tenofovir 245 mg/day = 200 w, (1);		100%	Type III; Cryocrit: Pos; RF:	Purpura, (2); Neuropathy, (2); Chronic hepatitis,(2);	Cryocrit: Neg(2) RF: normal (2) C4: normal (2) ALT: normal (2)	CR: Purpura, (2); NR: Neuropathy, (2)

Author, Year	Pts n.	Antiviral Agent, Dose	Other Treatment, Duration, (n) Weeks (w), (n)	Negative HBV-DNA	Laboratory Features	Clinical Manifestations, (n)	Immune Response/ ALT Response	Cryoglobulinemic Vasculitis Response,(n)
		Entecavir 0.5 mg/day = 204 w, (1)			Pos; C4:Pos			
Boglione et al. 2013 [28]	7	Telbivudine 600 mg/day = 48 w, (7)		100%	Cryocrit: 3.4; ALT: 79	Purpura, (3); neuropathy, (4); Skin ulcer, (2); Chronic hepatitis, (7)	Cryocrit: 1% (0-2) ALT median: 33 (22-44)	CR: Purpura,(3); Neuropathy, (2); NR: Peripheral neuropathy, (2); Skin ulcer, (2)
Viganò et al. 2014 [40]	1	Entecavir 0.5 mg/72 h = 108 w		100%	Cryocrit: 3; RF: Pos; C4: 5; ALT: 178; creatinine: 3.4 mg/dl; proteinuria: 2.5 g/24 h	Purpura, Fatigue, GN, Cirrhosis	Cryocrit: Neg RF: normal C4: normal ALT: 13; Creatinine: 0.5 mg/dlproteinuria: 40 mg/day	CR: Purpura; Fatigue; GN
Yamazaki et al. 2014 [41]	1	Entecavir 0.5 mg/day = 28 w	CS+PE,	100%	Type II; Cryocrit: 2%; C4: 1; ALT: 4; creatinine: 4.0 mg/dl	Purpura, Skin ulcer, GN	Cryocrit: Neg	CR: Purpura, skin ulcers; NR: GN
Terrier et al. 2015 [22]	3	Lamivudine 100 mg/day, (1); Entecavir 0.5 mg/day, (2);	PE+CS+RTX, (1); PE+CYC+CS+RTX, (1)	100%2	Type II; Cryocrit: pos; C4: 0.24	Purpura, (2); Arthralgia, (2); GN, (3); Chronic hepatitis, (3)	Cryocrit: Neg (1)	CR: Purpura, (2); Arthralgia, (2); GN, (3);
Visentini et al. 2016 [42]	1	Tenofovir 245 mg/day = 52 w		100%	Type II; Cryocrit: pos; RF: pos; C4 low level	Purpura, Chronic hepatitis	Cryocrit: Neg RF: normal C4: low level	CR: Purpura
Mazzaro et al. 2016 [29]	7	Entecavir nr = 192 w, (5); Adefovir nr	CS alone previous NAs, (1)	100%	Type II, 7; Cryocrit: 3; RF: 200;	Purpura, 7; Arthralgia, 7; Skin ulcer, 1; Chronic	Cryocrit median: 1% RF median: 86;	CR: Purpura, (7); Arthralgia, (5); Skin Ulcer, (1); NR: Arthralgia, (2)

References

1. Gamen, D.; Prince, A.M. Hepatitis B virus infection –natural history and clinical consequences. *N. Engl. J. Med.* 2004, 350, 1118–1129.
2. Cacoub, P.; Saadoun, D.; Bourliere, M.; Khiri, H.; Martineau, A.; Benhamou, Y.; Varastet, M.; Pol, S.; Thibault, V.; Rotily, M.; et al. Hepatitis B virus genotypes and extrahepatic manifestations. *J. Hepatol.* 2005, 43, 764–770.

Author, Year	Pts n.	Antiviral Agent, Dose	Other Treatment (n)	Negative HBV-DNA	Laboratory Features	Clinical Manifestations (n)	Immune Response/ ALT Response	Cryoglobulinemic Vasculitis Response,(n)	ients.
		= 48 w, (1); Lamivudine = 192 w, (1)			C4: 8; ALT: 72	hepatitis, 6; Cirrhosis, 1	C4 median: 10 ALT median: 20		
Li et al. 2017 [30]	9	Entecavir nr = 64 w, (7); Lamivudine nr = 24 w, (2)	CS alone, 3; CS+CYC, 1; CS+PE+RTX, (1); CS+PE+MMF, (1)	100%	Type II, 3; Type III, 6; Cryocrit: 1900 mg/L RF: 824; C4: 6; ALT: 48; Creatinine: 2.2 mg/dl; Proteinuria: 5.0 g/day	Purpura, (4); Arthralgia, (2); Neuropathy, 2; Gastrointestinal, 2; GN, 9;	Creatinine median: 1.0 mg/dl; Proteinuria median: 1.6 g/day.	CR: Purpura, (2); Arthralgia, (2); GN, (2); Neuropathy, (2); PR: GN, (3); Gastrointestinal, (1); NR: GN, (4); Gastrointestinal, (1);	clinical incidence of for the 8, 79–

8. Zignego, A.L.; Ramos-Casals, M.; Ferri, C.; Saadoun, D.; Arcaini, L.; Roccatello, D.; Antonelli, A.; Desbois, A.C.; Comarmond, C.; Gragnani, L.; et al. International therapeutic guidelines for patients with HCV-related extrahepatic disorders. A multidisciplinary expert statement. *Autoimmun. Rev.* 2017, 16, 523–541.

9. Zignego, A.L.; Ferri, C.; Saadoun, D.; Arcaini, L.; Roccatello, D.; Antonelli, A.; Desbois, A.C.; Comarmond, C.; Gragnani, L.; et al. International therapeutic guidelines for patients with HCV-related extrahepatic disorders. A multidisciplinary expert statement. *Autoimmun. Rev.* 2017, 16, 523–541.

10. Galli, M.; Monti, G.; Monteverde, A.; et al. Hepatitis C virus and mixed cryoglobulinemia. *Lancet* 1992, 339, 989.

Some case reports have shown that viral suppression induced by NAs was associated with serum clearance of cryoglobulins. Giuggioli and Longobardo [35] reported a case of a patient with hepatitis C and mixed cryoglobulinemia. Raynaud phenomenon and peripheral neuropathy. Visentini and colleagues [36] reported the regression of VH1-69+ B-cell clones, which have been implicated also in the pathogenesis of HCV-related CV, in two patients successfully treated with antiviral therapy. In a wider population where NAs treatment was effective in suppressing HBV replication, a significant improvement of peripheral neuropathy was reported in 2/6 patients, while skin ulcers persisted in two [37]. However, other authors obtained skin ulcer improvement combining entecavir therapy with corticosteroids and plasma exchange [38].

11. Ferri, C.; Sebastiani, M.; Giuggioli, D.; Galati, M.; Fallahi, P.; Piluso, A.; Antonelli, A.; Zignego, A.L. Hepatitis C virus syndrome: A constellation of organ and non-organ specific autoimmune disorders. *Clin. Infect. Dis.* 2016, 63, 1717–1724.

12. Ferri, C.; Zignego, A.L.; Giuggioli, D.; Sebastiani, M.; Cazzato, M.; Antonelli, A.; La Civita, L.; Fadda, P.; Longobardo, G.; Pileri, S. HCV and cryoglobulinemic vasculitis. *Cleve Clin. J. Med.* 2002, 69 (Suppl. S2), SII20–SII23.

13. Ferri, C.; Sebastiani, M.; Giuggioli, D.; Galati, M.; Fallahi, P.; Piluso, A.; Antonelli, A.; Zignego, A.L. Hepatitis C virus syndrome: A constellation of organ and non-organ specific autoimmune disorders. *Clin. Infect. Dis.* 2016, 63, 1717–1724.

14. Galli, M.; Oreni, L.; Saccardo, F.; Castenovo, L.; Filippini, D.; Marson, P.; Mascia, M.T.; Mazzaro, C.; Origgì, L.; Ossi, E.; et al. HCV-unrelated cryoglobulinemic vasculitis: The results of a prospective observational study by the Italian Group for the Study of Cryoglobulinaemias (GISC). *Clin. Exp. Rheumatol.* 2017, 35 (Suppl. S103), 67–76.

15. Roccatello, D.; Saadoun, D.; Ramos-Casals, M.; Tzioufas, A.G.; Fervenza, F.C.; Cacoub, P.; Zignego, A.L.; Ferri, C. Cryoglobulinemia. *Nat. Rev. Dis. Primers.* 2018, 4, 11.

Zignego and colleagues [40] reported purpura disappearance, reduction of cryoglobulins and normalization of RF, C4, creatinine and proteinuria in one patient treated with entecavir after negativization of HBV-DNA. Terrier and

16. Dagnone [22] studied 24 patients with hepatitis B and cryoglobulinemic vasculitis. The patients with Goss [23] and Guillen [24] and Hämmerle [25] et al. in 2012 revised the International Chapel Hill Consensus Conference classification of vasculitis with Arthritis Rheum. 2013, 65, 1–11. In the remaining two cases.

17. Quartuccio, L.; Baldini, C.; Priori, R.; Bartoloni, E.; Carubbi, F.; Alunno, A.; Gandolfo, S.; Colafrancesco, S.; Giacomelli, R.; Gerli, R.; et al. Cryoglobulinemia in Sjögren Syndrome: A Disease Subset that Links Higher Systemic Disease Activity, Autoimmunity, and Local B Cell Proliferation in Mucosa-associated Lymphoid Tissue. *J. Rheumatol.* 2017, 44, 1179–1183.

In a recent study, Li and coworkers [30] described 12 patients affected by HBV-associated glomerulonephritis. Seven were treated with entecavir for 16 months and 2 with lamivudine for 12 months. The main clinical, biochemical, histological characteristics of the patients and NAs therapy are shown in Table 2. Nephrotic syndrome

18. De Vita, S.; Quartuccio, L.; Baldini, C.; Priori, R.; Bartoloni, E.; Carubbi, F.; Alunno, A.; Gandolfo, S.; Colafrancesco, S.; Giacomelli, R.; Gerli, R.; et al. Cryoglobulinemia and impaired renal function in Sjögren's syndrome and hepatitis C virus infection: Differences based on the pattern of bone marrow, viremia, and lymphoma evaluation and laboratory tests after parotidectomy. *Rheumatology* 2012, 51, 627–633.

19. Retamozo, S.; Gheitasi, H.; Quartuccio, L.; Kostov, B.; Corazza, L.; Bové, A.; Siso-Almirall, A.; Gondia, M.; Ramos-Casals, M.; De Vita, S.; et al. Cryoglobulinaemic vasculitis at diagnosis predicts mortality in primary Sjögren syndrome: Analysis of 515 patients. *Rheumatology* 2016, 55, 1443–1451.

2.2. Pegylated-Interferon Alfa

20. Quartuccio, L.; Isola, M.; Corazza, L.; Maset, M.; Monti, G.; Gabrielli, A.; Tzioufas, A.G.; Ferri, C.; Ferraccioli, G.; Ramos-Casals, M.; et al. Performance of the preliminary classification criteria for cryoglobulinaemic vasculitis and clinical manifestations in hepatitis C virus-unrelated severe side effects, which discourage its use in HBV-related CV [44]. Lohr and colleagues [45] reported a single case of a young female with chronic hepatitis B and purpura due to type II MC treated with PEG-IFN- α 2b, three times

21. Trejo, O.; Ramos-Casals, M.; García-Carrasco, M.; Yagüe, J.; Jiménez, S.; de la Red, G.; Cervera, R.; Font, J.; Ingelmo, M.; et al. Cryoglobulinemia: Study of etiologic factors and clinical and immunologic features in 443 patients from a single center. *Medicine* 2001, 80, 252–262.

22. Terrier, B.; Mane, I.; Lacroix, A.; Belchot, P.; Bonnet, F.; Chiche, L.; Graillat, B.; Hot, A.; Kahn, J.E.; Michel, C.; et al. Non-HBV related infectious cryoglobulinemia vasculitis: Results from the French nationwide Cryovals survey and systematic review of the literature. *J. Autoimmun.* 2015, 65, 74–81.

23. Ferri, C.; Sebastiani, M.; Giuggioli, D.; Cazzato, M.; Longombardo, G.; Antonelli, A.; Puccini, R.; Michelassi, C.; Zignego, A.L. Mixed cryoglobulinemia: Demographic, clinical, and serologic features and survival in 231 patients. *Semin. Arthritis Rheum.* 2004, 33, 355–374.

24. Monti, G.; Gagliani, M.; Gagliani, G.; Puccini, R.; Saccoccia, F.; Monteverde, P.; PEGAF, P.; Pirogrande, M.; Renoldi, P.; Bombardieri, S.; Bordin, G.; et al. Cryoglobulinemias: A multi-centre study of the early

25. In summary, effectiveness of PEG-IFN- α in HBV-related CV is inconsistent. Right now, the NAs therapy should be preferred over PEG-IFN- α as first line therapy in HBV-related CV. *QJM* 1995, 88, 115–126.

2.3. Rituximab

Am. 2009, 35, 125–137.

26. Lemoab Ys, Gorrieri P, Di Ricca Kassab, ahli Yohai, C, Di Paolantonio, E. Selective involvement of the skin in the manifestations of mixed cryoglobulinemia. *Ann Intern Med*. 1977; 87: 287–292.

27. Mazzaro, C.; Dal Maso, L.; Mauro, E.; Gattei, V.; Gheresetti, M.; Bulian, P.; Moratelli, G.; Grassi, G.; Zorat, F.; Pozzato, G. Survival and prognostic factors in mixed cryoglobulinemia: Data from 246 cases. *Diseases* 2018, 6, 35.

28. Boglione, L.; D'Avolio, A.; Cariti, G.; di Perri, G. Telbivudine in treatment of hepatitis B-associated cryoglobulinemia. *J. Clin. Virol.* 2013, 56, 167–169.

29. Mazzaro, C.; Dal Maso, L.; Uffaro, T.; Mauro, E.; Castelhovo, L.; Casarin, P.; Monti, G.; Gattei, V.; Zignego, A.L.; Pozzato, G. Hepatitis B virus related cryoglobulinemic vasculitis: A multicentre open label study from the Gruppo Italiano di Studio delle Cryoglobulinemie (GISC). *Dig. Liver Dis.* 2016, 48, 780–784.

30. Li, S.; Xu, S.T.; Chen, H.P.; Zhang, M.Q.; Xu, F.; Cheng, S.Q.; Liu, Z.H. Clinical and morphologic summary, there are plenty of works [40–48, 49–51], that demonstrate the effectiveness of rituximab for non-responders to the antiviral therapy, relapsing patients or for patients with severe or life-threatening spectrum of renal involvement in patients with HBV-associated cryoglobulinaemia. *Nephrology* 2017, 22, 449–455.

31. Menzer, M.; Franklin, E.C. Cryoglobulinemia—a study of twenty-nine patients. IgG and IgM cryoglobulins and factors affecting cryoprecipitability. *Am. J. Med.* 1966, 40, 828–836.

32. Cacoub, P.; Fabiani, F.L.; Musset, L.; Perrin, M.; Frangeul, L.; Leger, J.M.; Huraux, J.M.; Piette, J.C.; Godeau, P. Mixed cryoglobulinemia and hepatitis C virus. *Am. J. Med.* 1994, 96, 124–132.

33. Roccatello, D.; Fornasieri, A.; Giachino, O.; Rossi, D.; Beltrame, A.; Banfi, G.; Confalonieri, R.; Tarantino, A.; Pasquali, S.; Amoroso, A.; et al. Multicenter study on hepatitis C virus related cryoglobulinemic glomerulonephritis. *Am. J. Kidney Dis.* 2007, 4, 69–82.

2.4. Plasma exchange

34. Nelson, N.; Rozenblit, P.; McElroy, B.J. Epidemiology of hepatitis B virus infection and small ranitidine of study a vaccination should be. *Class Liver Dis.* 2016, 20, 607–618.

35. Cakir, N.; Nuri Pamuk, O.; Umit, H.; Midilli, K. Successful treatment with Adefovir of one patient retrospective cohort survey including 22 Italian GISc centers evaluated 159 patients with severe CV who whose CV relapsed under lamivudine therapy and who was diagnosed to have HBV virologic breakthrough with YMDD mutations. *Intern. Med.* 2006, 45, 1213–1215.

36. Kawada, N.; Oda, S.; Mizobuchi, S.; Sato, Y. Remission of hepatitis B virus-related and significantly more cryoglobulinemic during the first year after the initiation of entecavir. *Intern. Med.* 2008, 47, 919–912.

37. Enomoto, M.; Makanishi, T.; Ishii, M.; Tamori, A.; Kawada, N. Entecavir to treat hepatitis B-associated cryoglobulinemic vasculitis. *Ahn. Intern. Med.* 2008, 149, 912–913.

38. Conca, P.; Riccio, A.; Tarantino, G. Successful lamivudine monotherapy in an elderly patient suffering from HBV-related decompensated cirrhosis associated with widespread leukocytoclastic vasculitis. *Int. J. Immunopathol. Pharmacol.* 2009, 22, 531–535.

39. D'Apolito, E.; Racapatti, S.; Palazzi, G. Successful treatment of hepatitis B virus-associated cryoglobulinemic vasculitis with a combination of rituximab and plasmapheresis. *Clin. Infect. Dis.* 2013, **57**, 155.

40. Vigano, M.; Martin, P.; Cappelletti, M.; Fabrizi, F. HBV-associated cryoglobulinemic vasculitis: and colleagues [22] administered lamivudine, corticosteroids, and plasmapheresis to one patient with HBV-CV with Remission after antiviral therapy with Entecavir. *Kidney Blood Press. Res.* 2014, **39**, 65–73.

41. Yamazaki, T.; Akimoto, T.; Okuda, K.; Sugase, T.; Takeshima, F.; Numata, A.; Morishita, Y.; Iwazu, Y.; Yoshizawa, H.; Komada, T.; et al. Purpura with ulcerative skin lesions and mixed nephropathy and purpura not obtaining a clinical response. Subsequently, the patient underwent rituximab, attaining clinical remission of purpura and nephropathy. A second patient affected by HBV-related nephropathy and purpura received entecavir, plasmapheresis, corticosteroid, and cyclophosphamide, obtaining clinical remission of nephropathy and purpura. In one recent study [50], two patients with HBV-related CV with rapidly progressive glomerulonephritis were initially treated with entecavir, corticosteroid, and plasmapheresis, without appreciable changes in the clinical and biochemical features. Subsequently, one of them was treated with rituximab, obtaining purpura remission, reduction of cryoglobulins and RF but renal failure worsened, requiring dialysis.

42. Visentini, M.; Pascolini, S.; Mitrevski, M.; Marzapoli, R.; Del Padre, M.; Todi, L.; Camponeschi, A.; Axtoris, E.; Canesimo, M.; De Santis, A.; et al. Hepatitis B virus caused mixed cryoglobulinemia by driving clonal expansion of innate B cells producing a VH1-69 encoded antibody. *Clin. Exp. Rheum.* 2016, **34**, S28–S32.

Globally, plasmapheresis may be indicated in severe and life-threatening HBV-related CV. However, in patients with HBV-positive cirrhosis due to either hemodynamic changes and the immunological dysfunctions associated with this condition, plasmapheresis should be used very cautiously.

43. Visentini, M.; Cagliuso, M.; Conti, Y.; Carbonari, M.; Casato, M.; Fiorilli, M. The V(H)V1-69-expressing marginal zone B cells expanded in HCV-associated mixed cryoglobulinemia display proliferative anergy irrespective of CD21(low) phenotype. *Blood* 2011, **118**, 3440–3441.

2.5. Steroids

44. European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. *J. Hepatol.* 2017, **67**, 370–398.

In high doses or as pulse therapy, corticosteroids have been in use for many years in subjects with severe systemic CV (ulcer, progressive peripheral neuropathy, and glomerulonephritis) [62]. The high doses of corticosteroids, both employed alone or associated with apheresis, are recommended by GISC to control severe CV flares [60]. Cellular immune reactions and response to interferon treatment. *J. Med. Virol.* 1994, **44**, 330–335.

45. Lohf, H.; Goergen, B.; Weber, W.; Goedert, W.; Meyer zum Buschenfelde, K.H.; Gerken, G.; et al. Mixed cryoglobulinemia type II in chronic hepatitis B associated with HBs e minus HBV mutant. *CV flares* [60].

46. La Civita, L.; Zignego, A.L.; Lombardini, F.; Monti, M.; Longombardo, G.; Pasero, G.; Ferri, C. A previous study [29] described the use of low-dose corticosteroids for 48 months in five patients, obtaining the remission of purpura and arthralgia in three patients while clinical symptoms persisted after the end of treatment in the remaining two. All patients obtained a reduction of the cryocrit level, but none of them showed a complete disappearance of cryoglobulins at the end of therapy. The RF serum levels remained elevated, and the C4 level remained unchanged at the end of treatment in all patients. Notably, in 8 patients treated with corticosteroids alone without NAs, no virological response was documented (HBsAg remained positive in all, with detectable HBV-DNA) [29].

47. Zaja, F.; de Vita, S.; Mazzaro, C.; Sacco, S.; Damiani, D.; De Marchi, G.; Michelatti, A.; Bacearani, M.; Fanni, R.; Ferraccio, G. Efficacy and safety of rituximab in type I mixed cryoglobulinemia. *Blood* 2003, **101**, 3827–3834.

48. Roccatello, D.; Baldovino, S.; Rossi, D.; Mansouri, M.; Naretto, C.; Gennaro, M.; Cavallo, R.; Alpa, M.; Costanzo, P.; Giachino, O.; et al. Long-term effects of anti-CD20 monoclonal antibody are responsible for significant side effects. However, as stated in the GISC recommendation, such a treatment may be helpful if administered as short-term courses for chronic pain control [63].

49. Quartuccio, L.; Soardo, G.; Romano, G.; Zaja, F.; Scott, C.A.; De Marchi, G.; Fabris, M.; Ferraccio, G.; De Vita, S.; et al. Rituximab treatment for glomerulonephritis in HCV-associated mixed cryoglobulinemia: Efficacy and safety in the absence of steroids. *Rheumatology* 2006, **45**, 842–846.

56ix Rizzoli, D. et al. Diagnostic features, treatment, and outcome of cryoglobulinemic vasculitis in subjects who had hepatitis B. *Int J Clin Exp Rheumatol*. 2019; 16(12):162-174. Subjects who had hepatitis B and cryoglobulinemic vasculitis were included. The study included 18 patients with hepatitis B and cryoglobulinemic vasculitis. Clinical presentation and histological features (diagnostic pitfalls, only diagnostically controversial in the management of the disease) and the experience of the authors in the treatment of cryoglobulinemic vasculitis in the context of hepatitis B are described. The study is a case report and the results are not generalizable. The study is a case report and the results are not generalizable.

51. Vacchi, C.; Visentini, M.; Gragnani, L.; Fraticelli, P.; Tavoni, A.; Filippini, D.; Saccardo, F.; Lauletta, G.; Colantuono, S.; Atzeni, F.; et al. Safety and effectiveness of biosimilar of Rituximab CT-P10 in previous paper [\[29\]](#), and they were included herein since they were still on NAs therapy and regularly monitored. The treatment of cryoglobulinemic vasculitis: The MARBLE study (Mixed cryoglobulinemia A Table 3 summarizes the main clinical, immune, and virological characteristics of the study population. Rituximab BiosimiLar). *Intern. Emerg. Med.* 2020, 16, 149–156.

52. Pasquet, P.; Combarieu, F.; Macgregor, B.; Coppero, B.; Massesvey, C.; Nihet, A.; et al. Safety and efficacy of rituximab treatment for vasculitis in hepatitis B virus-associated type II cryoglobulinemic vasculitis. *Int J Clin Exp Rheumatol*. 2019; 16(12):162-174. HBV-infection [\[47\]](#).

No. of Patients		18
5	Female/Male	10/8
5	Age/Years, Median (range)	59 (33–81)
Biochemical and Virological Features		Dis.
5	HBV-DNA positive, n (%)	18 (100)
5	HBV-DNA IU/mL, median	6630
5	MC type II/type III	17/1
5	Cryocrit %, median (range)	4 (1–70)
5	RF IU/mL, median (range)	181 (10–5850)
5	C4 mg/dL, median (range)	9 (2–31)
5	ALT IU/mL, median (range)	51 (21–638)
6	Creatinine mg/dL, median (range)	1.0 (0.6–1.3)
Clinical Features		IUZZO, A.
5	Purpura, n (%)	18 (100)
5	Arthralgias, n (%)	11 (61)
5	Skin Ulcers, n (%)	3 (17)
6	Sjögren's syndrome, n (%)	5 (28)
6	Peripheral neuropathy, n (%)	11 (61)

threatening mixed cryoglobulinemia syndrome. *Autoimmun. Rev.* 2019, 18, 778–785.

61. Schwartz, J.; Padmanabhan, A.; Aqui, N.; Balogun, R.A.; Connelly-Smith, L.; Delaney, M.; Dunbar, N.M.; Witt, V.; Wu, Y.; Shaz, B.H.; et al. Guidelines on the use of therapeutic apheresis in clinical

	Glomerulonephritis, n (%)	1 (6)	r
	NHL	2 (11)	
6	Chronic hepatitis, n (%)	4 (22)	F; mixed
	Cirrhosis, n (%)	1 (6)	11, 10,
Antiviral Agent, n, Median Duration (months)			
	Entecavir	11 (78)	anti, G.;
	Tenofovir	6 (67)	
6	Lamivudine	1 (58)	
Other treatment, n, Median Duration (months)			
	Peg-IFN alone	3 (17)	
	CS-associated NAs	4 (22)	
	PE-associated NAs	4 (22)	
	RTX-associated NAs	2 (11)	
Virological Response, n (%)			
	Cryocrit %, median (range)	1 (0–14)	
	RF IU/mL, median (range)	181 (10–5850)	
	C4 mg/dl, median (range)	7 (1–24)	
	ALT IU/mL, median (range)	16 (12–34)	
Cryoglobulinemic Vasculitis Complete Response			
	Purpura, n (%)	14 (78)	
	Arthralgia, n (%)	8 (44)	
	Skin Ulcers, n (%)	2 (11)	
	Sjögren'ssyndrome, n (%)	2 (11)	
	Peripheral neuropathy, n (%)	6 (33)	
Cryoglobulinemic Vasculitis Partial Response			
	Purpura, n (%)	4 (22)	

Arthralgia, n (%)	3 (17)
Peripheral neuropathy, n (%)	5 (28)
Glomerulonephritis, n (%)	1 (6)
NHL	2 (11)

Legend: CS, Corticosteroids, CYC, cyclophosphamide, RTX, Rituximab, PE, plasma exchange, NHL, non-Hodgkin lymphoma, RF, rheumatoid factor. Normal range: RF (0–25 IU/mL); C4 (10–40 mg/dl); ALT (6–36 IU/L).

Purpura was present in 18/18 (100%) patients, arthralgia in 11/18 (61%), ulcers in 3/18 (17%), Sjögren's syndrome in 5/18 (28%), peripheral neuropathy in 11/18 (61%), glomerulonephritis in 1/18 (6%) and 2/18 (11%) had a NHL. Before the beginning of NAs therapy, 3 (17%) patients underwent treatment with PEG-IFN- α for 12 months and 2 patients achieved a transient vasculitis response despite a persistent HBV-DNA positivity.

Four out of 18 (22%) patients received a low dose of prednisone (≤ 10 mg/day) associated with NAs therapy to control purpura flares and arthralgia. Plasma exchange associated with NAs was used in 4 (22%) patients with severe CV: One had elevated cryocrit in low-grade NHL, 1 had nephropathy, 2 had debilitating neuropathy and skin ulcers. Low doses of rituximab (250 mg/m 2 /weekly for four times) associated with NAs was used in 2 patients (11%): one had low-grade NHL and peripheral neuropathy, while the other had severe peripheral neuropathy and skin ulcers. Eleven patients were treated with entecavir for a median of 78 months (range: 9–111), 6 cases with tenofovir for a median of 67 months (range: 48–120), and 1 case with lamivudine for 58 months. After 6–12 months of therapy with NAs, viremia was undetectable in all patients (100%) and remained undetectable during the entire follow-up. In all patients, HBsAg remained positive. During the NAs therapy, purpura disappeared in 14/18 (78%), in 8/11 (73%) improvement of arthralgia, while regression of the leg ulcers in 2/3 (67%). Disappearance of leg ulcers was observed in one patient treated with entecavir monotherapy, while another patient treated with entecavir required plasma exchange followed by rituximab. A third patient showed skin ulcers persistence. Peripheral neuropathy improved in 5/18 (45%) cases (2 treated with entecavir and 3 with tenofovir). One patient with glomerulonephritis showed no improvement of renal function with tenofovir treatment and underwent plasma exchange and, subsequently, low doses of rituximab infusions. Despite the therapeutic efforts, the kidney failure progressed, requiring dialysis. A low-grade NHL case treated with tenofovir did not show a hematologic response and underwent sequential treatment with plasma exchange and low-dose rituximab, with a partial response. One patient on entecavir developed a cerebral diffuse large B-cell lymphoma after 60 months of therapy. Despite chemotherapy, the patient died because of lymphoma progression. One patient with cirrhosis and CV was treated with entecavir and obtained a rapid improvement of the purpura, while the peripheral sensory neuropathy persisted. Despite virological suppression and reduction of cryocrit and RF, the patient died of decompensated cirrhosis after 60 months. NAs therapy induced a decrease in cryocrit levels in all cases, although only 6/18 (33%) showed disappearance of cryoglobulins. The RF decreased in all patients, but the C4 serum levels remained low during treatment. No exacerbations of the clinical manifestations and no side effects were observed.

Long-term therapy with NAs should take into account other factors such as the patient's treatment compliance, the possible development of viral mutations causing drug resistance, and the potential toxicity, although the availability of different NAs guarantees a therapeutic coverage with multiple options. Treatment with NAs in subjects with HBV-related CV should be continued indefinitely even after the CV symptoms disappeared. The NAs treatment can be stopped only for those patients who achieve complete recovery from CV, HBsAg loss and HBsAg seroconversion.

Based on these reports, we can state that an optimal treatment for HBV-associated glomerulonephritis has not yet been established. The therapeutic schedule always includes the antivirals, but when HBV-CV is associated with nephrotic syndrome and a rapid decrease of renal function, the use of rituximab and plasma exchange should be considered [47][48][49][50][51][52].