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This systematic review discussed ML-based Android malware detection techniques. It critically evaluated 106 carefully

selected articles and highlighted their strengths and weaknesses as well as potential improvements. The ML-based

methods for detecting source code vulnerabilities were also discussed, because it might be more difficult to add security

after the app is deployed. Therefore, this paper aimed to enable researchers to acquire in-depth knowledge in the field

and to identify potential future research and development directions.
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1. Introduction

Numerous industrial and academic research has been carried out on ML-based malware detection on Android, which is

the focus of this review paper. The taxinomical classification of the review is presented in Figure 1. Android users and

developers are known to make mistakes that expose them to unnecessary dangers and risks of infecting their devices

with malware. Therefore, in addition to malware detection techniques, methods to identify these mistakes are important

and covered in this paper (see Figure 1). Detecting malware with ML involves two main phases, which are analysing

Android Application Packages (APKs) to derive a suitable set of features and then training machine and deep learning

(DL) methods on derived features to recognize malicious APKs. Hence, a review of the methods available for APK

analysis is included, which consists of static, dynamic, and hybrid analysis. Similar to malware detection, vulnerability

detection in software code involves two main phases, namely feature generation through code analysis and training ML on

derived features to detect vulnerable code segments. Hence, these two aspects are included in the review’s taxonomy.

Figure 1. Taxonomy of the review.

2. Background
2.1. Android Architecture

Android is built on top of the Linux Kernel. Linux is chosen because it is open source, verifies the pathway evidence,

provides drivers and mechanisms for networking, and manages virtual memory, device power, and security [5]. Android

has a layered architecture [6]. The layers are arranged from bottom to top. On top of the Linux Kernal Layer, the Hardware

Abstraction Layer, Native C/C++ Libraries and Android Runtime, Java Application Programming Interface (API)

Framework, and System Apps are stacked on top of each. Each layer is responsible for a particular task. For example, the

Java API Framework provides Java libraries to perform a location awareness application-related activity such as

identifying the latitude and the longitude.

2.2. Threats to Android



While Android has good built-in security measures, there are several design weaknesses and security flaws that have

become threats to its users. Awareness about those threats is also important to perform a proper malware detection and

vulnerability analysis. Many research and technical reports have been published related to the Android threats [13] and

classified Android threats based on the attack methodology. Social engineering attacks, physical access retrieving attacks,

and network attacks are described under the ways of gaining access to the device. For the vulnerabilities and exploitation

methods, man in the middle attacks, return to libc attacks, JIT-Spraying attacks, third-party library vulnerabilities, Dalvik

vulnerabilities, network architecture vulnerabilities, virtualization vulnerabilities, and Android debug bridges and kernel

vulnerabilities are considered.

2.2.1. Malware Attacks on Android

Malware attacks are the most common case that can be identified as a threat to Android. There are various definitions for

malware given by many researchers depending on the harm they cause. The ultimate meaning of the malware is any of

the malicious application with a piece of malicious code [16] which has an evil intent [17] to obtain unauthorised access

and to perform neither legal nor ethical activities while violating the three main principles in security: confidentiality,

integrity, and availability.

2.2.2. Users and App Developers’ Mistakes

The mistakes can happen knowingly or unknowingly from the developers as well as users. These mistakes may lead to

threats arising to Android OS and its applications. It has been identified that users are responsible for most security issues

[25]. Some common mistakes done by the users will lead to serious threats in an Android application. At the time of

installing Android applications, users will be asked to allow some permissions. However, all the users may not understand

the purpose of each permission. They allow permission to run the application without considering the severity of it.

Fraudulent applications might steal data and perform unintended tasks after getting the required permissions. It is

possible to arise threats to the Android systems due to the mistakes performed by the app developers at the time of

developing applications. In the publishing stage of the Android apps, Google Play will have only limited control over the

code vulnerabilities in the applications. Sometimes developers are specifying unwanted permissions in the Android

manifest file mistakenly, which encourages the user to grant the permissions if the permissions were categorised as not

simple permissions [26]. Though the app development companies and some of the app stores are advising about

following the security guidelines implemented at the time of development, many developers still fail to write secure codes

to build secured mobile applications [27].

2.3. Machine Learning Process

ML is a branch of artificial intelligence that focuses on developing applications by learning from data without explicitly

programming how the learned tasks are performed. The traditional ML methods make predictions based on past data. ML

process lifecycle consists of multiple sequential steps. They are data extraction, data preprocessing, feature selection,

model training, model evaluation, and model deployment [9]. Supervised learning, unsupervised learning, semisupervised

learning, reinforcement learning, and deep learning are the different subcategories of ML [28]. The supervised learning

approach uses a labelled dataset to train the model to solve classification and regression problems depend on the output

variable type (continuous or discreet). Unsupervised learning is used to identify the internal structures (clusters), the

characteristics of a dataset, and a labelled dataset is not required to train the model. A mix of both supervised and

unsupervised learning techniques are applied in semisupervised learning and used in a case of limited labelled data in the

used dataset [29]. The learning model and the data used for training are inferred. The model parameters are updated with

the received feedback from the environment in reinforcement learning where no training data is involved. This ML method

proceeds as prediction and evaluation cycles [30]. DL is defined as learning and improving by analysing algorithms on

their own. It works with models such as artificial neural networks (ANN) and consists of a higher or deeper number of

processing layers [31].

3. Methodology

Android was first released in 2008. A few years later, the security concerns were discussed with the increasing popularity

of Android applications [2]. More attention was received towards applying ML for software security in the last five years

because many researchers continuously identify and propose novel ML-based methods [9]. This review was conducted

according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) model [32]. Based on the

objective of this study, first we formulated several research questions. Next, a search strategy was defined to identify the

conducted studies which can be used to answer our research questions. The database usage and inclusion and exclusion

criteria were also defined at this stage. The study selection criteria were defined to identify the studies aiming to answer

the formulated research questions as the third stage. The fourth stage is defined as data extraction and synthesis, which

describes the usage of the collected studies to analyse for providing answers to the research questions. We reviewed

threats to the validity of the review and the mechanism to reduce the bias and other factors that could have influenced the

outcomes of this study as the last step of the review process. Figure 2 shows a summary of the paper selection method

for this systematic review.



RQ1: What are the existing reviews conducted in ML/DL based models to detect Android malware and source code

vulnerabilities?

RQ2: What are code/APK analysing methods that can be used in malware analysis?

RQ3: What are the ML/DL based methods that can be used to detect malware in Android?

RQ4: What are the accuracy, strengths, and limitations of the proposed models related to Android malware detection?

RQ5: Which techniques can be used to analyse Android source code to detect vulnerabilities?

Figure 2. PRISMA method: collection of papers for the review.

3.1. Research Questions

This systematic review aims to answer the following research questions.

4. Related Work

Previous reviews in

[9,13,17,34,35,36,37] discussed various ML-based Android malware detection techniques and ways to improve Android

security. However, several limitations have been identified in the above works, such as not covering recent proposals on

ML methods to detect malware, narrow scopes, and lack of critical appraisals of suggested detection methods. The lack of

a thorough analysis of ML/DL-based methods was also identified as a limitation of existing works. Android malware

detection and Android code vulnerability analysis have a lot in common. ML methods used in one task can be customised

for use in the other task. However, as per our understanding, there are no reviews that cover these two areas together.

These shortcomings have been addressed in this work and therefore our work is unique.

5. Machine Learning to Detect Android Malware

Malware detection in Android can be performed in two ways; signature-based detection methods and behaviour-based

detection methods [39]. The signature-based detection method is simple, efficient, and produces low false positives. The

binary code of the application is compared with the signatures using a known malware database. However, there is no

possibility to detect unknown malware using this method. Therefore, the behaviour-based/anomaly-based detection

method is the most commonly used way. This method usually borrows techniques from machine learning and data

science. Many research studies have been conducted to detect Android malware using traditional ML-based methods

such as Decision Trees (DT) and Support Vector Machines (SVM) and novel DL-based models such as Deep

Convolutional Neural Network (Deep-CNN) [40] and Generative adversarial networks [41]. These studies have shown that

ML can be effectively utilised for malware detection in Android [9]. 

5.1. Static, Dynamic, and Hybrid Analysis

As mentioned earlier, analysing APKs to extract features is required to use some of the proposed ML techniques in the

literature. To this end, three analysis techniques are identified as static, dynamic, and hybrid analysis method [62,63,64].

Static analysis can be performed by analysing the bytecode and source code (or re-engineered APK) instead of running it

on a mobile device. Dynamic analysis detects malware by analysing the application while it is running in a simulated or

real environment. However, there is a high chance of exposing the risks to a certain extent to the runtime environment in

the dynamic analysis since malicious codes will be executed which can harm the environment. The hybrid analysis

involves methods in both static and dynamic analysis.

5.2. Static Analysis with Machine Learning



Static analysis is the widely used mechanism for detecting Android malware. This is because malicious apps do not need

to be installed on the device as this approach does not use the runtime environment [67].

5.2.1. Manifest Based Static Analysis with ML

Manifest based static analysis is a widely used static analysis technique.

Table 1. Manifest based static Analysis with ML.

Year Study Detection
Approach

Feature
Extraction
Method

Used
Datasets

ML
Algorithms/Models

Selected ML
Algorithms/Models

Model
Accuracy Strengths Limitat

2018 [68]

Developing 3
level data
purring
method and
applying ML
models with
SigPID

Manifest
Analysis for
Permissions

Google
Play NB, DT, SVM SVM 90%

High
effectiveness
and accuracy

Consid
permis
which m
omit ot
analysi

2021 [69]

Analysing
permission
and training
the model with
identified ML
algorithm

Manifest
Analysis for
Permissions

Google
Play,
AndroZoo,
AppChina

RF, SVM,
Gaussian NB, K-
Means,

RF 81.5%

The model was
trained with
comparatively
different datasets

Did not
static a
feature
OpCod

2021 [70]

Reducing
dimension
vector
generation
and based on
that perform
malware
detection
using ML
models

Manifest
Analysis for
permissions

AMD,
APKPure

MLP, NB, Linear
Regression, KNN,
C.4.5, RF, SMO

MLP 96%

Efficiency,
applicability and
understandability
are ensured

Hyper-p
selectio
made in

2021 [71]

Selecting
feature using
dimensionality
reduction
algorithms
and using Info
Gain method

Manifest
Analysis for
permissions
and intents

Drebin,
Google
Play

RF, NB, GB, AB RF, NB, AB
RF-98%,
NB-92%,
AB-97%

Analysed the
features as
individual
components and
not as a whole

Did not
other fe
API cal

2021 [72]

Feature
weighting with
join
optimisation
of weight
mapping with
proposed
JOWMDroid
framework

Manifest
Analysis for
permission,
Intents,
Activities
and
Services

Drebin,
AMD,
Google
Play
APKPure

RF, SVM, LR, KNN JOWM-IO method
with SVM and LR 96%

Improved
accuracy and
efficiency

Correla
feature
consid

 

5.2.2. Code Based Static Analysis with ML

Code based analysis is the other way of performing the static analysis to detect Android malware with ML.

Table 2. Code based static Analysis with ML

Year Study Detection
Approach

Feature
Extraction
Method

Used
Datasets

ML
Algorithms/Models

Selected ML
Algorithms/Models

Model
Accuracy Strengths Limitat

2016 [78]

Transforming
malware
detection
problem to
matrix model
using
Wxshall algo
and
extracting
Smali codes
and
generated
the API call
graph using
Androguard

Code analysis
for API Calls
and code
instrumentation
for network
traffic

MalGenome

Custom build ML
based Wxshall
algorithm, Wxshall
extended
algorithm

Wxshall extended
algorithm 87.75% Few false

alarms

Requir
the beh
and im
efficien



2017 [74]

Using the
combination
of system
functions to
describe the
application
behaviours
and
constructing
eigenvectors
and then
using
Androidetect

Code analysis
for API calls
and Opcodes

Google
Play

NB, J48 DT,
Application
functions decision
algorithm

Application
functions decision
algorithm

90%

Can identify
the
instantaneous
attacks. Can
judge the
source of the
detected
abnormal
behaviour
High
performance
in model
execution

Did not
importa
analys
as OpC
etc.

2018 [39]

Using
TinyDroid
framework,
n-Gram
methods
after getting
the Opcode
sequence
from .smali
after
decompiling
.dex

Code Analysis
for Opcode Drebin NLP, SVM, KNN,

NB, RF, AP
RF and AP with
TinyDroid 87.6%

Lightweight
static
detection
system High
performance
in
classification
and detection

Malwar
taken o
researc
some o
which 
metam
sample

2018 [73]

Analysing
Package
level
information
extracted
from API
calls using
decompiled
Smali files

Code Analysis
for API calls
and Information
flow

Drebin,
Contagio,
Google
Play

DT, RF, KNN, NB RF 86.89%

Model
performs well
even when
the length of
the sequence
is short

Other i
contain
were n
which a
overall

2016 [77]

Using
Deterministic
Symbolic
Automaton
and
Semantic
Modelling of
Android
Attack

Code Analysis
for
Opcode/Byte
code

Drebin AB, C4.5, NB,
LinearSVM, RF RF 97%

Use a
combined
approach of
ML and DSA
inclusion

Unable
malwar
since t
perform
static a

2017 [80]

Training
Hidden
Markov
Models and
comparing
detection
rates for
models
based on
static data,
dynamic
data, and
hybrid
approaches

Code analysis
for API calls
and Opcode in
static analysis
and System
call analysis

Harebot,
Security
Shield,
Smart HDD,
Winwebsec,
Zbot,
ZeroAccess

HMM HMM 90.51%

Check the
difference
approaches
available to
detect ML

Did not
ML alg
importa

2019 [75]

Determining
the apps call
graphs as
Markov chain
Then
obtaining
API call
sequences
and using
ML models
with
MaMaDroid

Code Analysis
for API calls

Drebin,
oldbenign RF, KNN, SVM RF 94%

the system is
trained on
older samples
and evaluated
over newer
ones

Requir
memor
classif

2019 [76]

Calculating
confidence
of
association
rules
between
abstracted
API calls
which
provides
behavioural
semantic of
the app

Code Analysis
for API calls

Drebin,
AMD SVM, KNN, RF RF 96%

Efficient
feature
extraction
process
Better
stability of the
system

Did not
cases s
dynam
native 
encryp



5.2.3. Both Manifest and Code Based Static Analysis with ML

Some studies used both manifest and code based static analysis approaches to detect Android malware with ML.

Table 4. Both Manifest and Code based Static Analysis with ML.

Year Study Detection
Approach

Feature
Extraction
Method

Used
Datasets

ML
Algorithms/Models

Selected ML
Algorithms/Models

Model
Accuracy Strengths Limita

2017 [81]

Using
customized
method named
Waffle Director

Manifest
Analysis for
Sensitive
permissions
and API
calls

Tencent,
YingYongBao,
Contagio

DT, Neural
Network, SVM, NB,
ELM

ELM 97.06%

Fast Learning
speed and
Minimal
human
intervention

Comb
permi
calls a

2017 [82]

Using a code-
heterogeneity-
analysis
framework to
classify
Android
repackaged
malware by
Smali code
intermediate
representation

Manifest
Analysis for
Intents,
Permissions
and API
calls

Genome,
Virus-Share,
Benign App

RF, KNN, DT, SVM RF with custom
model proposed

FNR-
0.35%,
FPR-
2.96%

Provide in-
depth and
fine-grained
behavioural
analysis and
classification
on programs

Detect
happe
malwa
techni
reflect
handle
encryp
used i

2018 [84]

Extracting
features and
transforming
into binary
vectors and
training using
ML with
RanDroid
Framework

Manifest
Analysis for
Permissions
Code
Analysis for
API calls,
opcode and
native calls

Drebin SVM, DT, RF NBs DT 97.7%

Highly
accurate to
analyse
permission,
API calls,
opcode an
native calls
toward
malware
detection

Broad
filtere
Flow G
deep n
analys
consid

2018 [86]

Creating the
binary vector,
apply ML
models,
evaluate
performance of
the features
and their
ensemble
using
DroidEnsemble

Manifest
analysis for
permissions,
code
analysis for
API calls
and system
calls
analysis

Google Play,
AnZhi,
LenovoMM,
Wandoujia

SVM, KNN, RF SVM 98.4%

Characterises
the static
behaviours of
apps with
ensemble of
string and
structural
features.

Mecha
the ma
encryp
disass
kernel
evade

2019 [83]

Extracting
applications
features from
manifest while
decompiling
classes.dex
into jar file and
applying ML
models

Manifest
Analysis for
permissions,
activities
and Code
Analysis for
Opcode

Drebin,
playstore,
Genome

KNN, SVM,
BayesNet, NB, LR,
J48, RT, RF, AB

RF with 1000
decision trees 98.7%

High
efficiency,
Lightweight
analysis and
fully
automated
approach

Did no
the AP
impor
when 
DEX.

2019 [85]

Using
FlowDroid for
static analysis
and proposing
TFDroid
framework to
detect malware
using sensitive
data flow
analysis

Manifest
Analysis for
permission
and Code
Analysis for
information
flow

Drebin,
Google Play SVM SVM 93.7%

Analysed the
functions of
applications
by their
descriptions
to check the
data flow.

Did no
impro
techni
applic
ML mo

 

5.3. Dynamic Analysis with Machine Learning

The second analysis approach is dynamic analysis. Using this approach it is possible to detect malware with ML after

running the application in a runtime environment.

Table 5. Dynamic analysis based malware detection approaches.

Year Study Detection
Approach

Feature
Extraction
Method

Used
Datasets

ML
Algorithms/Models

Selected ML
Algorithms/Models

Model
Accuracy Strengths Limitat



2017 [87]

Extracting the
DNS, HTTP,
TCP, Origin
based features
of the network
used by apps

Network traffic
analysis for
network
protocols

Genome
DT, LR, KNN,
Bayes Network,
RF

RF 98.7%

Work with
different OS
versions,
Detect
unknown
malware, and
infected
apps

If the m
using e
possibl
malwar

2017 [88]

Using Markov
Chain-based
detection
technique, to
compute the
state
transitions and
to build
transition
matrix with
6thSense

System
resources
analysis for
process
reports and
sensors

Google
Play

Markov Chain, NB,
LMT LMT 95%

Highly
effective and
efficient at
detecting
sensor-
based
attacks while
yielding
minimal
overhead

Tradeof
frequen
battery
not disc
can affe
detectio

2017 [89]

Using Dynamic
based
permission
analysis using
a run-time and
detect malware
using ML
calculate the
accuracy

Code
instrumentation
analysis Java
classes and
dynamic
permissions

Pvsingh,
Android
Botnet,
DroidKin

NB, RF, Simple
Logistic, DT K-Star Simple Logistic 99.7% High

Accuracy

Need to
app cra
the sele
in dyna

2019 [90]

Using
dynamically
tracks
execution
behaviours of
applications
and using
ServiceMonitor
framework

System call
analysis

AndroZoo,
Drebin
and
Malware
Genome

RF, KNN, SVM RF 96.7%

High
accuracy
and high
efficiency

Not det
differen
system
malwar
apps si
based v
not app

2020 [91]

Extracting the
features and
permissions
from Android
app.
Performing
feature
selection and
proceed to
classification
with DATDroid

System call
analysis, Code
instrumentation
for network
traffic analysis
and System
resources
analysis

APKPure,
Genome RF, SVM RF 91.7% High

efficiency

Impact 
like HTT
pattern
conside

2021 [92]

Using
decompilation,
model
discovery,
integration and
transformation,
analysis and
transformation,
event
production

Code
instrumentation
for java
classes, intents

AMD
ML algorithms
used in MEGDroid,
Monkey, Droidbot

MEGDroid 91.6%

Considerably
increases
the number
of triggered
malicious
payloads
and
execution
code
coverage

System
monito

 

5.4. Hybrid Analysis with Machine Learning

Hybrid analysis is the third approach which can be used in ML-based Android malware detection.

Table 6. Hybrid analysis based malware detection approaches

Year Study Detection
Approach

Feature
Extraction
Method

Used
Datasets

ML
algorithms/Models

Selected ML
algorithms/Models

Model
Accuracy Strengths Limitations

2017 [96]

Using a set of
Python and
Bash scripts
which
automated
the analysis
of the
Android data.

Manifest
analysis for
permissions
and System
call analysis
for dynamic
analysis

Andrototal NB, DT DT 80%
Model
execution is
efficient

Consider s
appearanc
than freque
Lower num
samples us



2018 [95]

Using Binary
feature vector
and
permission
vector
datasets were
created using
the analysis
techniques
and was used
with the ML
algorithms

Manifest
analysis for
permissions
and system
call analysis

Drebin

RF, J.48, NB,
Simple Logistic,
BayesNet TAN,
BayesNet K2,
SMO PolyKernel,
IBK, SMO
NPolyKernel

RF

Static-
96%,
Dynamic-
88%

Compared
with several
ML
algorithms

Accuracy d
the 3rd par
(Monkey ru
to collect f

2019 [94]

Preparing a
JSON file
after reverse
engineering,
decompiling,
and analysing
the APK by
running in a
sandbox
environment
and then
extracting the
key features
and applied
ML

Manifest
analysis for
permissions,
code
analysis for
API calls
and System
call analysis

MalGenome,
Kaggle,
Androguard
[79]

SVM, LR, KNN, RF

LR for static
analysis and RF
for dynamic
analysis

Static-
81.03%,
Dynamic-
93%

Dynamic
analysis
performed
was better
than the
static
analysis
approach in
terms of
detection
accuracy

Did not per
proper hyb
approach t
the overall

2017 [99]

Using import
term
extraction,
clustering
and applying
genetic
algorithm
with
MOCODroid

Code
analysis for
API calls
and
information
flow and
system call
analysis

Virus-total,
Google Play

Genatic algorithm,
Multiobjective
evolutionary
algorithm

Multiobjective
evolutionary
classifier

95.15%

Possible to
avoid the
effects of
the
concealment
strategies

Did not con
other clust
methods.

2020 [97]

Extracted 261
combined
features of
the hybrid
analysis with
using the
support of
datasets and
performed
the ML/DL
models

Manifest
analysis for
permissions
and system
call analysis

MalGenome,
Drebin,
CICMalDroid

SVM, KNN, RF, DT,
NB, MLP, GB GB 99.36%

Hybrid
analysis is
having
higher
accuracy
comparing
to static
analysis and
dynamic
analysis
individually

Runtime en
and config
not consid

2020 [98]

Using
Conditional
dependencies
among
relevant
static and
dynamic
features.
Then trained
ridge
regularised
LR classifiers
and modelled
their output
relationships
as a TAN

Manifest
analysis for
permissions,
code
analysis for
API calls
and system
call analysis

Drebin,
AMD, AZ,
Github, GP

TAN TAN 97% Highly
accurate

Possibility
malwares r
undetected

2021 [100]

Using exploit
static,
dynamic, and
visual
features of
apps to
predict the
malicious
apps using
information
fusion and
applied Case
Based
Reasoning
(CBR)

Manifest
analysis for
permissions
and System
call analysis

Drebin CBR, SVM, DT CBR 95%

Require
limited
memory and
processing
capabilities

Require to 
knowledge
representa
address so
limitations

 

5.5. Use of Deep Learning Based Methods



It is possible to use deep learning techniques also for detecting Android malware. In MLDroid, a web-based Android

malware detection framework.

Table 8. Deep learning based malware detection approaches

Year Study Detection
Approach

Feature
Extraction
Method

Used
Datasets

ML/DL
Algorithms/Models

Selected DL
Algorithms/Models

Model
Accuracy Strengths Lim

2017 [104]

Using n-Gram
methods after
getting the
Opcode
sequence
from .smali
after
dissembling
.apk

Code Analysis
for Opcodes

Genome,
IntelSecurity,
MacAfee,
Google Play

CNN, NLP Deep CNN 87%

Automatically
learn the
feature
indicative of
malware
without hand
engineering

Ass
AP
Goo
wh
in m

2021 [108]

Using DL
based method
which uses
Convolution
Neural
Network
based
approach to
analyse
features

Code Analysis
for API calls,
Opcode and
Manifest
Analysis for
Permission

Drebin, AMD CNN CNN

91% and
81% on
two
datasets

Reduce over
fitting and
possible to
train to
detect new
malware just
by collecting
more sample
apps

Did
oth

2018 [102]

Applying
LSTM on
semantic
structure of
bytecode with
2 layers of
detection and
validating with
DeepRefiner

Code Analysis
for
Opcode/bytecode

Google Play,
VirusShare,
MassVet

RNN, LSTM LSTM 97.4%

High
efficiency
with average
of 0.22 s to
the 1st layer
and 2.42 s to
the 2nd layer
detection

Nee
mo
upd
mo
ma

2020 [105]

Detecting
Malware
attributes by
vectorised
opcode
extracted from
the bytecode
of the APKs
with one-hot
encoding
before apply
DL
Techniques

Code Analysis
for Opcode

Drebin,
AMD,
VirusShare

BiLSTM, RNN,
LSTM, Neural
Networks, Deep
Convents, Diabolo
Network model

BiLSTMs 99.9%

Very high
accuracy,
Able to
achieve zero
day malware
family
without
overhead of
previous
training

Did
com

2020 [106]

Using
DynaLog to
select and
extract
features from
Log files and
using DL-
Droid to
perform
feature
ranking and
apply DL

Code
instrumentation
analysis for java
classes, intents,
and systems
calls

Intel
Security

NB, SL, SVM, J48,
PART, RF, DL DL 99.6%

Experiments
were
performed on
real devices
High
accuracy

Cou
imp
intr
par
mo
ma

2021 [101]

Selecting
features
gained by
feature
selection
approaches.
Applying
ML/DL models
to detect
malware

Code
instrumentation
for java classes,
permissions, and
API calls at the
runtime

Android
Permissions
Dataset,
Computer
and security
dataset

farthest first
clustering, Y-MLP,
nonlinear
ensemble decision
tree forest, DL

DL with methods
in MLDroid 98.8%

High
accuracy and
easy to
retrain the
model to
identify new
malware

Hum
wo
som
con
dat



2021 [107]

Characterising
apps and
treating as
images. Then
constructing
the adjacency
matrix. Then
applying CNN
to identify
malware with
AdMat
framework

Code Analysis
for API calls,
Information flow,
and Opcode

Drebin AMD CNN CNN 98.2%
High
Accuracy and
efficiency

Per
dep
of u

 

6. Machine Learning Methods to Detect Code Vulnerabilities

Hackers do not just create malware. They also try to find loopholes in existing applications and perform malicious

activities. Therefore, it is necessary to find vulnerabilities in Android source code. A code vulnerability of a program can

happen due to a mistake at the designing, development, or configuration time which can be misused to infringe on the

security [38]. Detection of code vulnerability can be performed in two ways. The first method is reverse-engineering the

APK files using a similar approach discussed in Section 3. The second method is identifying the security flaws at the time

of designing and developing the application [109]. 

6.1. Static, Dynamic, and Hybrid Source Code Analysis

Similar to analysing APKs for malware detection, there are three ways of analysing source codes. They are static

analysis, dynamic analysis, and hybrid analysis. In static analysis, without executing the source code, a program is

analysed to identify properties by converting the source to a generalised abstraction such as Abstract Syntax Tree (AST)

[113].

The number of reported false vulnerabilities depends on the accuracy of the generalisation mechanism. The runtime

behaviour of the application is monitored while using specific input parameters in dynamic analysis. The behaviour

depends on the selection of input parameters. However, there are possibilities of undetected vulnerabilities [114].

In hybrid analysis, it provides the characteristics of both static analysis and dynamic analysis, which can analyse the

source code and run the application to identify vulnerabilities while employing detection techniques [115].

 

6.2. Applying ML to Detect Source Code Vulnerabilities

It has been proven that ML methods can be applied on a generalised architecture such as AST to detect Android code

vulnerabilities [38]. Most of the research was conducted using static analysis techniques to analyse the source code.

 

Year Study
Code
Analysis
Method

Approach Used ML/DL
Methods/Frameworks

Accuracy
of the
Model

2017 [127] Dynamic
Analysis

Collected 9872 sequences of function calls as
features. Performed dynamic analysis with DL
methods

CNN-LSTM 83.6%

2017 [133] Hybrid
Analysis

Decompiled the apk file. Performed static analysis of
the manifest file to obtain the
components/permissions. Dynamic analysis and
fuzzy testing were conducted and obtained system
status.

AB and DT 77%

2019 [115] Hybrid
Analysis

Reverse engineered the APK, Decoded the manifest
files & codes and extracted meta data from it.
Performed dynamic analysis to identify intent
crashing and insecure network connections for API
calls. Generated the report.

AndroShield 84%

2020 [124] Hybrid
Analysis

Performed intelligent analysis of generated AST.
Checked ML can differentiate vulnerable and
nonvulnerable.

MLP and a customised
model 70.1%

2017 [113] Static
Analysis

Generated the AST, navigated it, and computed
detection rules. Identified smells when training with
manually created dataset.

ADOCTOR framework 98%



2017 [128] Static
Analysis

Combined N-gram analysis and statistical feature
selection for constructing features. Evaluated the
performance of the proposed technique based on a
number of Java Android programs.

Deep Neural Network 92.87%

2019 [129] Hybrid
Analysis

Decompiled the APK and selected the features and
executed the APK and generated log files with system
calls. Generated the vector space and trained with ML
algorithms as parallel classifiers.

MLP, SVM, PART,
RIDOR, MaxProb,
ProdProb

98.37%

2020 [121] Hybrid
Analysis

In static analysis, vulnerabilities of SSL/TLS
certification were identified. Results from static
analysis about user interfaces were analysed to
confirm SSL/TLS misuse in dynamic analysis.

DCDroid 99.39%

2021 [122] Static
Analysis

32 supervised ML algorithms were considered for 3
common vulnerabilities: Lawofdemeter,
BeanMemberShouldSerialize, and
LocalVariablecouldBeFinal

J48 96%

2021 [123] Static
Analysis

Classified malicious code using a PE structure and a
method for classifying it using a PE structure CNN 98.77%

 

7. Results and Discussion

Based on the reviewed studies in ML/DL based methods to detect malware, it is identified that 65% of studies related to

malware detection techniques used static analysis, 15% used dynamic analysis, and the remaining 20% followed the

hybrid analysis technique. This high attractiveness of static analysis may be due to the various advantages associated

with it over dynamic analysis, such as ability to detect more vulnerabilities, localising vulnerabilities, and offering cost

benefits. 

Many ML/DL based malware detection studies used the code analysis method as the feature extraction method. Apart

from that, manifest analysis and system call analysis methods are the other widely used methods. It is possible to detect a

substantial amount of malware after analysing decompiled source codes rather than analysing permissions or other

features. That may be the reason for the high usage of code analysis in malware detection.

By using the feature extraction methods, permissions, API calls, system calls, and opcodes are the most widely extracted

features. Many hybrid analysis methods extracted permissions as the feature to perform static analysis. It is easy to

analyse permissions when comparing with the other features too. These could be reasons for the high usage of

permissions as the extracted feature. Services and network protocols have low usage in feature extractions. The reason

for this may be it is comparatively not easy to analyse those features.

Drebin was the most widely used dataset in Android Malware Detection, and it was used in 18 reviewed studies. Google

Play, MalGenome, and AMD datasets are the other widely used datasets. The reason for the highest usage of the Drebin

dataset may be because it provides a comprehensive labelled dataset. Since Google Play is the official app store of

Android, it may be a reason to have high usage for the dataset from Google.

It is identified that the RF, SVM, and NB are at the top of widely studied ML models to detect Android malware. The reason

may be that the resource cost to run RF, SVM, or NB based models is low. Models like CNN, LSTM, and AB have less

usage because to run such advanced models, good computing power is required, and the trend for DL-based models was

also boosted in recent years. Table 12 summarises widely used ML/DL algorithms with their advantages and

disadvantages. 

The majority of the studies used hybrid analysis and static analysis as the source code analysis techniques in vulnerability

detection in Android. To perform a highly accurate vulnerability analysis, the source code should be analysed and

executed too. Therefore, this may be the reason to have hybrid analysis and static analysis as the widely used source

code analysis methods to detect vulnerabilities.

 

8. Conclusions and Future Work

Any smartphone is potentially vulnerable to security breaches, but Android devices are more lucrative for attackers. This is

due to its open-source nature and the larger market share compared to other operating systems for mobile devices. This

paper discussed the Android architecture and its security model, as well as potential threat vectors for the Android

operating system. Based upon the available literature, a systematic review of the state-of-the-art ML-based Android

malware detection techniques was carried out, covering the latest research from 2016 to 2021. It discussed the available

ML and DL models and their performance in Android malware detection, code and APK analysis methods, feature analysis



and extraction methods, and strengths and limitations of the proposed methods. Malware aside, if a developer makes a

mistake, it is easier for a hacker to find and exploit these vulnerabilities. Therefore, methods for the detection of source

code vulnerabilities using ML were discussed. The work identified the potential gaps in previous research and possible

future research directions to enhance the security of Android OS.

Both Android malware and its detection techniques are evolving. Therefore, we believe that similar future reviews are

necessary to cover these emerging threats and their detection methods. As per our findings in this paper, since DL

methods have proven to be more accurate than traditional ML models, it will be beneficial to the research community if

more comprehensive systematic reviews can be performed by focusing only on DL-based malware detection on Android.

The possibility of using reinforcement learning to identify source code vulnerabilities is another area of interest in which

systematic reviews and studies can be carried out.
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