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Reservoirs are manmade lakes created by building dams on rivers for various purposes: flood control, electricity

generation, irrigation, water supply, aquaculture, environmental services, recreational activities, navigation etc. In

freshwater ecosystems, several mechanisms are involved in the natural carbon cycle. They receive carbon from terrestrial

ecosystems through drainage, capture the carbon through primary production, bury the carbon in sediments, emit GHG

through biomass degradation and respiration, and transport the carbon downstream to the seas or oceans. GHG

emissions can be increased by human activities around the ecosystem through sewage and agricultural pollution.
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1. Introduction

Dams affect the natural carbon cycle in freshwater ecosystems through floods of terrestrial vegetation and soils. The

flooded organic matter decomposes causing additional GHG emissions, especially in the first years after the reservoir

creation. Flooding can also increase sedimentation and decomposition in the reservoir, due to longer water residence

times, which can lead to higher GHG emissions . In addition, reservoirs can have large fluctuations in the water level,

especially hydroelectric reservoirs that store large volumes of water to be used during drought. It can, therefore, be said

that artificial reservoirs differ from natural lakes by riverine nutrient inputs, the flooding of terrestrial organic carbon, and

water-level fluctuations; they also may have different GHG emissions. Reservoirs present, from a social, economic and

environmental point of view, not only advantages, but also disadvantages.

2. The Use of Reservoir

Reservoir use can serve single or multiple purposes. According to the International Commission on Large Dams (ICOLD),

70% of large reservoirs are designed for single-purpose usage. Around 11% of large reservoirs have been built only for

hydropower generation and 14% for hydropower generation plus other uses. These high figures show why GHG

emissions from reservoirs should be accounted for. In addition, the study of these emissions indicates ways to reduce

them.

3. Greenhouse Gases

The main greenhouse gases emitted by a reservoir are CO , CH  and N O. They have a different global warming

potential (GWP). For the time period of 100 years, GWP for CO  is 1; for CH , it is 34 times higher than that of CO , and

for N O, it is 298 times that of CO  .

The CO  is generated by the decomposition of organic material and nutrients transported in the reservoir by affluent or by

rainfall and overland flow, by the decomposition of dead organic matter stored in the soil of the reservoir, by the respiration

of vegetation present in the reservoir, from CO  dissolved in water and from the oxidation of CH . The sediments in

drawdown areas are also a source of CO  emission, due to their exposure to air during water level fluctuations.

The emission of CH  comes from the decomposition of organic matter and vegetation under anaerobic conditions in the

soil or sediment layer of the reservoir.

Nitrous oxide (N O) arises as a by-product of the aerobic nitrification reaction or of the anaerobic denitrification that occurs

in lake riparian areas. The few measurements of N O emission from reservoirs showed a variation similar to that of CH  in

terms of generation. The contribution of N O to the total GHG emission expressed as an CO  equivalent is low, compared

to CH  și CO  (N O—17 mg CO /m /d; CH —275 mg CO /m /d and CO —1585 mg CO /m /d) .

GHG (CO  and CH ) reaches the atmosphere through the following channels: diffusive flow from the reservoir surface,

through degassing when passing through the hydraulic turbine and spillway (due to pressure drop), through diffusive flow

at the downstream river surface. Methane can also reach the surface of the reservoir through bubbling in shallow areas of

reservoir.

The main factors influencing GHG emissions are the carbon stock in soil and flooded biomass or that transported by the

upstream rivers in reservoirs; the concentration of dissolved oxygen in the reservoir; water quality and nutrient content;
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the inflow and shape of the reservoir; the water depth and extension of the littoral zone; the wind speed at the reservoir

surface; and the water temperature and configuration of dam intake and outlets . These factors influence the

biochemical processes of organic matter formation, respiration, methanogenesis, CH  oxidation, gas exchange between

the reservoir and the atmosphere. The GHG measurements showed a variation in time and space within a reservoir and

also a seasonal variation and a decrease in general with the age of the reservoir.

There are many studies on the evaluation of GHG emissions from reservoirs, which differ by the methodologies used, the

lifespan considered, and the size and type of reservoir 

.

Most studies have analyzed GHG emissions from hydropower reservoirs. The few studies performed on natural lakes

have shown that there are no significant differences between reservoir surface emissions from hydropower reservoirs,

compared to non-hydropower reservoirs . At hydropower reservoirs, there are also degassing emissions, downstream

emissions and emissions from drawdown zones.

From the analysis of GHG emissions from 85 different hydroelectric reservoirs with a global distribution, it was observed

that all the reservoirs are sources of CH  to the atmosphere, the majority (88%) are also a source of CO  (only 12% of

reservoirs are net sinks of CO ) and that there is a large variation in emissions .

Knowing the GHG emissions generated by reservoirs is an important factor in making decisions to finance future projects

and discerning how environmentally friendly they are.

4. Conclusions

Built to meet human needs, multipurpose reservoirs increase human well-being, but they cause changes in the water

quality, ecosystem and flow regime of river networks. They are considered neutral in terms of GHG emissions, but they

may become considerable sources of GHG depending, especially, on the climatic zone in which they are located and their

uses. The creation of a water reservoir on a river leads to the generation of GHG, due to biogeochemical processes in the

reservoir. The calculation of GHG emissions of the studied reservoir, which is placed in a temperate zone and has multiple

uses of water, shows that they are lower than those of a lake (306.85 g CO /m /yr versus 953.73 g CO /m /yr).

Knowing the GHG emissions from the reservoir is useful to accurately report the greenhouse gas (GHG) emissions. To

calculate the CO  emission, four models were used; to calculate the CH  emission, six models were used. If the difference

between the highest (520 mg CO /m /d) and the lowest CO  emission value (205.48 mg CO /m /d) is more than two-fold,

the difference between the highest CH  emission (76.52 mg CH /m /d) and the lowest emission value (1.16 CH  mg

CH /m /d) is much larger, by about 65 times.

Because not all the methodologies reviewed make an overall assessment of GHG emissions and because some are used

only for hydropower reservoirs—except the G-res tool, which estimates the GHG emissions from the reservoir surface,

drawdown, turbines and spillway—it is difficult to compare the results obtained by applying the methodologies to the

multipurpose reservoir, Stânca-Costești.

In the absence of a standardized methodology for calculating GHG emissions from the reservoirs, the reviewed models

can be used in correlation with the available data on reservoirs.
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