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Cystic fibrosis (CF) is the most common of rare hereditary diseases in Caucasians, and it is estimated to affect
75,000 patients globally. CF is a complex disease due to the multiplicity of mutations found in the CF
transmembrane conductance regulator (CFTR) gene causing the CFTR protein to become dysfunctional. Although
CFTR is the main chloride channel in the lungs, others could, e.g., anoctamin-1 (ANO1 or TMEM16A), compensate
for the deficiency of CFTR.

cystic fibrosis anoctamin-1 calcium-activated chloride channel CFTR-independent therapy

| 1. Introduction

Cystic fibrosis (CF), an autosomal recessive genetic multiorgan disease, is caused by an absent or dysfunctional
CF transmembrane conductance regulator (CFTR) channel that mainly mediates chloride anion transport across
the apical membrane of epithelial cells. On the pulmonary level, CF leads to persistent pulmonary infections,
chronic inflammation, and mucus plugging in the airways, causing irreversible lung damage. To date, more than
2000 different mutations in the CFTR gene have been identified L. A classification system groups mutations into
six classes according to the functional consequences they generate on the CFTR protein: (1) class I: no functional
CFTR protein; (2) class Il: CFTR trafficking defects; (3) class Ill: defective channel gating; (4) class IV: decreased
channel conductance; (5) class V: reduced synthesis of CFTR; (6) class VI: decreased CFTR stability at plasma
membrane. Today, many symptomatic therapeutics (antibiotics, mucus thinners, bronchodilators, supplements to
prevent malnutrition, etc.) are available to treat patients with CF, which has lengthened their life expectancy from 5
years in 1960 to over 50 years. New curative treatments aimed at rescuing CFTR dysfunctionality have emerged.
There are four FDA-approved CFTR modulators developed by Vertex Pharmaceuticals (Kalydeco®, Orkambi®,
Symdeko®, and the latest Trikafta®) [, although the proven efficacy of these correctors and potentiators is limited
only to particular mutations. There are still 15% of patients without any CFTR-directed therapeutics. Hence, there is
an interest in finding an alternative strategy to treat patients with CF independently of CFTR mutations. Alternative
ion channels have been suggested to bypass CFTR dysfunction B4l such as ENaC [, the solute carrier 26A9
(SLC26A9) & and calcium-activated chloride channel (CaCCs), including anoctamin-1 (ANO1 or TMEM16A) 41,

Such approaches might be efficient therapies for all patients, regardless of their CF mutations.

| 2. Anoctamin-1

CaCCs were described for the first time in 1981 in Rana pipiens eggs @ and then in Xenopus laevis oocytes [&l.

Today, CaCCs have been identified in many cellular types (neurons, epithelial cells, smooth muscle cells,
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pancreatic cells, etc.) and have been shown to play essential roles in cellular functions B2 Among CaCCs is
the anoctamin family (ANO for anion channel and OCTA for their eight predicted transmembrane domains or
TMEML16), consisting of 10 proteins (ANO1-10). ANOs might play an essential role in development due to their
temporal and spatial differential expression in many developing tissues. We can separate ANOs into two groups:
ANO1-2 and the rest. However, ANO2 has different biophysical characteristics to ANO1 and its expression is
limited to the vomeronasal epithelium 2213 |n 2008, ANO1 was identified as a CaCC by three independent
research groups [241[13][16]

| 3. ANO1 in Cystic Fibrosis

3.1. Overview

A study showed that the activity of CaCCs, in general, was increased in the nasal epithelium in vivo of patients with
CF 17, In 1986, another team demonstrated the presence of chloride current at the apical membrane of epithelial
cells of CF in the presence of ionized calcium 8. Moreover, another study showed a decrease in ATP-induced
chloride efflux in the primary bronchial epithelial cell line 22, The identification of ANO1 as a CaCC later on and its
involvement in many deregulated processes in patients with CF made it a real therapeutic target. In the last few
years, more research has been dedicated to ANOL1 in CF.

Recent data reported the absence of calcium-induced chloride currents in epithelial cells of ANO1 KO mice 29, A
subsequent study showed that CFTR expression requires ANOL1 in plasma membranes, indicating a close
relationship between the two chloride channels 21, Moreover, ANO1 expression and chloride activity were
decreased in CF [22. According to several observations ((1) ANO1’'s absence decreases airway secretion, (2)
ANOL is ubiquitously expressed in all the tissue affected by CF, including airway epithelial cells where ANOL1 is a
secondary chloride channel, (3) ANO1 provides a chloride pathway that is CFTR-independent, and (4) ANO1 is
involved in HCO3~ secretion, which is highly important for fluid secretion and mucus hydration [23]), increasing
ANO1 activity can probably compensate for CFTR deficiency (Figure 1). Different approaches targeting ANO1
have been developed to bypass CFTR dysfunction.
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Figure 1. In CF airways, dysfunctional CFTR leads to compromised chloride efflux. Sodium entry is upregulated,
leading to a dehydrated air surface liquid (ASL) and impaired mucociliary clearance favoring mucostasis, causing
chronic inflammation and infection. In healthy airways, ANOL1 is colocalized with CFTR within the apical membrane
of epithelial cells, contributing to ion and water homeostasis. In CF ciliated cells, the expression of ANOL1 is also
diminished. Modulating ANO1, as an alternative CF therapy, could compensate for defective CFTR and, thus,

enhance fluid secretion by ciliated epithelial cells, regulating ASL height and pH.
3.2. Drug Approaches Targeting ANO1 in Cystic Fibrosis

Many molecules have been used to modulate ANO1’s activity, but few were shown to be efficient and, most

importantly, specific to ANO1 (Table 1).

Table 1. Summary of ANOL1 inhibitors and activators used in CF.

Inhibitors Specificity Assay References
Not
ANI9 N In vitro [241(25]
specific
Not
CCinh-A01 3 In vitro, in vivo [26]
specific
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Inhibitors Specificity Assay References
Not
DIDS - In vitro 27l
specific
Diphenylamine-2-carboxylate (DPC), 5-nitro-2-(3- Not ] (28]
) ) ) -~ In vitro
phenylpropylamino) benzoic acid specific
Not
Flufenamic acid N In vitro 291201
specific
Not
Niclosamide N In vitro, in vivo 2
specific
Not
Niflumic acid B In vitro, in vivo (2]
specific
Not
Plumbagin - In vitro 23]
specific
Not In vitro, in vivo, clinical trial
Quercetin B 341(5136)
specific (phase II)
Not
Tannic acid B In vitro 7]
specific
T16ainh-A01 Specific In vitro [26]
Activators
Not In vitro, in vivo, clinical trial (38][39][401[41]
Denufosol (INS37217) » _ [42][43](44]
specific (phase Il failed)
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Inhibitors Specificity Assay References
] Not In vitro, in vivo, clinical trial [45]
Duramycine (MOLI1901) N )
specific (phase Il failed)
Not
Eact N In vitro (26]
specific
N In vitro, in vivo, clinical trial [46]
ETDO002 (or ETX001) Specific
(phase 1)
Not
i i (4]
Interleukin 4 specific In vitro ok place.
) therapy,
[38][39][40][41] s and led
Not .
Resveratrol - In vitro, in vivo, clinical trial “nigEs  ride efflux
specific —
\ppointing
volume in
TSB ANO1 Specific In vitro, in vivo, preclinical =0 2 to rapid
tosis that

might have led to an increase in mucus in the airways. Therefore, CaCC activators need to target CaCCs directly

without elevating cytoplasmic calcium for more targeted therapy and efficacy 42

ANO1 identification paved the way for the development of specific activator molecules which would, without

modifying the calcium signaling, obtain a more sustained activation over time, leading to better efficiency.

Another novel drug is an ANO1 potentiator (ETD002) developed by Enterprise Therapeutics (based in the
University of Sussex Innovation Center, UK) and acquired by Roche (Genentech) in October 2020. This inhaled
molecule demonstrated an upregulation of ANO1, which boosts epithelial fluid secretion and mucus clearance in
primary CF bronchial epithelial cells and ovine models. Unlike denufosol, intracellular calcium measurements
checked that ETD002 did not affect calcium mobilization, coherent with a direct effect on ANO1. A phase | study to
test the safety of ETD002 in healthy participants is in progress 24, The mechanism via which ETD002 potentiates
ANO1 activity is still unclear.

Our team has also worked on an innovative alternative approach using a locked nucleic acid (LNA)-enhanced
antisense oligonucleotide (ASO). A previous study demonstrated that microRNA (miR-9) contributes to the
downregulation of ANO1 expression and activity by directly targeting its 3'UTR. ASO ANOL1 binds to the 3'UTR
target site of ANO1 mRNA, preventing miR-9 from gaining access to that site 9. ASO ANO1 has increased ANO1

expression, chloride activity, and mucus clearance in primary human CF cells and CF mice. Recent studies have
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suggested that ANO1 plays an essential role in mucus production B To date, we have not observed any
significant increase in mucin 5AC (MUC5AC, the main component of respiratory mucus produced by goblet cells)

or mucin 5B (MUC5B, gel-forming mucin that plays a key role in mucociliary clearance) expression in vitro.

Currently, ANO1 activation as a therapeutic target is subject to controversial opinions. Centeio et al. found an
upregulation of ANO1 expression in submucosal glands, airway smooth muscles, and pulmonary blood vessels in
CF and asthmatic inflamed lungs 2. Moreover, activating ANO1 with Eact, which also activates other channels,
induced mucus production in airway goblet cells and bronchoconstriction in ovalbumin-sensitized asthmatic mice
(23] whereby activating ANO1 could worsen the pathology in inflammatory airway diseases. Instead, the authors
demonstrated that ANO1 inhibition by niclosamide significantly reduced goblet cell metaplasia and mucus
production in asthmatic mice, as well as inhibited MUC5AC expression in Calu-3 human submucosal cells,
suggesting that ANO1 inhibition might be beneficial in inflammatory airway diseases B2, It is also important to note
that a transcriptome meta-analysis revealed that CF and asthma pathways are highly divergent 2!, Furthermore,
the same group reported a defect of mucus secretion and accumulation in secretory cells in 2018 when ANO1 was
knocked out in ciliated airway epithelial cells and intestinal goblet cells, highlighting the vital role of ANO1 in mucus

secretion 1. Another study showed that ANO1 inhibitors reduced both mucus secretion and airway hyperactivity
(54],

On the other hand, using a human respiratory basal cell line (BCi-NS1.1), Simdes et al. showed that MUC5AC
production does not require ANO1, and their simultaneous upregulation is only circumstantial under cell
proliferation 22, The authors also showed a decrease in ASL when inhibiting ANO1. Furthermore, while replying to
Olschewski et al.'s concerns on increasing ANO1 activity, Danahay et al. declared that positive modulation of
ANOL1 induces no bronchospasm in the conscious sheep model nor affects vascular smooth muscle contraction
(unpublished observations) B8IEZl Overall, ANO1's possible role in mucus production remains obscure and evokes

controversial opinions over the beneficial or deleterious results of stimulating the channel in CF.
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