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The SPM system consists of four main components, namely, the body of the buoy, the anchoring and mooring

components, the fluid transfer system and the ancillary elements. Static legs linked to the seabed underneath the surface

keep the buoy body in place. Above the water level, the body has a spinning portion that is attached to the

offloading/loading tanker. A roller bearing, referred to as the main bearing, connects these two portions. Due to this array,

the anchored tanker can easily weather-vane around the buoy and find a steady position. The concept of the buoy is

determined by the type of bearing utilized and the divide between the rotating and geostatic sections. The buoy’s size is

determined by the amount of counter buoyancy required to keep the anchor chains in place, and the chains are

determined by environmental conditions and vessel size.
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1. Categorisation of SPM Moorings

CALM buoy is an application of SPM mooring systems . There are three categories of SPM moorings

that will be looked: SPMs, CALM buoys and marine hose systems. These are based on their operational relevance to the

CALM buoy system or the connecting FPSO tanker in an SPM unloading or discharging hose system, like deepwater

lines, Oil Offloading Lines (OLLs), flexible riser pipes, flexible hoses, and other CALM buoy hose systems 

. To avoid failure, safety must be key for installation and (un)loading . An operation to replace or

install components can be carried out to change the complete buoy hose system, like on the SBM buoy in Djeno Teminal,

Congo , as depicted in Figure 1.

Figure 1. Full replacement operation of floating hoses, submarine hoses, hawsers and a single point mooring (SPM) buoy

attached to a service offshore vessel (SOV) by a tug supply boat, located at 35 m water depth in Republic of Congo,

Djeno Terminal (Courtesy: Bluewater & South Offshore ).

Once the floating buoy is secured to the seafloor by moorings, next is the anchoring systems. These might be made up of

ships, rigs, piles, or gravity anchors, depending on the local soil conditions. Based on the SPM classification, CALM and

SALM are the two most common mooring systems for SPMs. In a CALM system, the buoy is held in place by the CALM’s

anchor chain, which runs in catenaries towards anchor points slightly further away from the buoy. The SALM system is

similar, with the exception that the SALM is only anchored by one anchor leg. The key advantage of a CALM buoy over a

SALM buoy is it is easy to maintain. CALM buoys have been deployed in the vast majority of Marine Terminals since the

mid-1990s.
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2. Components of SPM System

Generally, the mooring lines, connectors, and anchors make up a mooring system. The mooring wires can also be used to

connect buoys and clump weights. A mooring line can be made of a variety of materials, such as chains, fiber ropes, or

wire ropes. Figure 2  represents a CALM buoy system, three mooring configurations and various components, adapted

from . The three mooring configurations seen on Figure 2 are the Chinese lantern configuration, single point mooring

(SPM), and tandem mooring.

Figure 2. Catenary Anchor Leg Mooring (CALM) buoy hose system showing Chinese lantern configuration, single point

mooring (SPM), and tandem mooring. It shows the Marine Breakaway Coupling (MBC), anchor, mooring chain or anchor

chain, floating hose, under-buoy hose or submarine hose, buoyancy floats, CALM buoy, hawsers, surge protector, tug

boat, submerged pipeline, pipeline end manifold (PLEM) and the CALM buoy bridle. (Adapted with permission ).

Figure 2 also shows various components like the Marine Breakaway Coupling (MBC), floating hose, under-buoy hose or

submarine hose, buoyancy floats, CALM buoy, surge protector, tug boat, submerged pipeline, pipeline end manifold

(PLEM), hawsers, CALM buoy bridle, anchor, and anchor chain or mooring chain.

Harnois  provided a comparison of various mooring line materials. The inertia, elastic stiffness, and damping of a

mooring line are affected by the material used. An anchor’s purpose is to secure a mooring line to a fixed place on the

bottom. The ability to resist high, horizontal, and in some cases vertical loads in a specific seabed type (soft to hard), cost-

effectiveness, and ease of installation are the major requirements for an anchor. There are several types of anchors

available, including dead weight, drag embedment, pile anchor, and plate anchor. It is noteworthy to add that the use of

hawser is dependent on the size of the vessel to be anchored to the buoy, as hawser systems can use one or two ropes,

as depicted in Figure 1 and Figure 2.

A mooring system is made up of many materials and components that are organized in a specific way, as shown in Figure
3. The other SPM components are as follows:

Figure 3. Illustration of the components and configurations for a mooring system. [Illustration design: by Author1].
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The access to the buoy deck is provided by a boat landing;

The buoy is protected by fenders;

The material handling equipment includes lifting and handling equipment;

Maritime visibility aids and a fog siren are used to keep moving vessels alert and attentive;

The navigation aids or other equipment are powered by the electrical subsystem;

The sources of power systems are batteries and solar systems. While the batteries are replenished on a regular basis,

the solar power systems employ sun-sourced renewable energy and maintain the charge in the battery packs, for

electrical power;

A hydraulic system can be added for remote operation with PLEM valves, if needed.

3. Components of CALM Buoy System

The Catenary Anchor Leg Mooring (CALM) buoy system has a buoy with a pivot, called the turntable. This rotates around

the vertical axis of the pivot, as the tanker is moored to it. The floating hose is also connected to the turntable, at an angle

through the hose manifold. The elastically moored buoy of radius a is acted upon by a wave train of irregular waves and

wave height H progressing in x-direction, as illustrated in Figure 1. The turntable on the mooring buoy can spin around its

vertical axis. The tanker is moored to the turntable and is connected to the floating hose strings that are also attached to

the turntable. Due to the forces imposed by the currents and waves, the entire system can freely rotate, which is termed

weather-vaning. Figure 1 and Figure 3 show Catenary Anchor Leg Mooring (CALM) buoy systems. Basically, there are

three CALM system mooring components, namely, the anchors, the chain anchors and the chain stoppers. The anchors

are used to hold things together, including the piles or gravity anchors for connecting the seabed with the mooring chain.

The most common chain anchors are systems with either six or eight anchor chains. The third component is the stoppers

for chains, which are for connecting the buoy with the mooring chains. The anchor chains help to keep the buoy in place.

The fluid is transferred to the submarine hose strings via a swivel, which links to the undersea pipeline via the pipeline end

manifold.

4. Different Mooring Configuration

There are other types of offshore mooring systems, aside SPM. Based on the mathematical modeling, HMs and MMs,

considering SPMs for bonded marine hoses, have been developed over 45 years based on earlier works on point

moorings and simple floating buoys. The application of offshore hoses has also led to advances in different mooring

systems used in fluid transfer, as seen in Figure 4.

Figure 4. Configurations for mooring lines showing: (a) multi-catenary taut; (b) catenary; (c) taut; (d) spread; (e) SALM; (f)

ship-to-ship catenary; (g) weight-added connection; (h) Lazy-S, (i) CALM; and (j) Steep-S. [Sketch design: by Author1].



Moorings are also applied on shipping vessels for other oil field operations like CO   oil recovery . Several studies

assessed mooring statics and dynamics for CALM buoy, as well as with attached hoses, which were considered as a

single point mooring (SPM) terminal . The design of each hose-mooring system considers different

loadings, predictive motion responses with structural statics/dynamics , and governing

theories on the hydrodynamics of floating structures . In addition, the design of FOS is based

on different industry standards . The application of a mooring configuration is based on the application

requirement, the type of (un)loading operation, and the environmental conditions. Some of these mooring applications

require floating, catenary, and reeling hoses, while others require submarine hoses.

5. Review on Physical Models on Hoses and SPMs

The selection of hose systems for single point mooring (SPM) systems has been described by Ziccardi and Robbins .

Setting up buoys in low-tide areas was discussed as the authors also wanted to stimulate more hose and flexible rubber

pipeline designs and applications. They studied the SPM deployments at Tokyo Bay’s Hakozaki and Koshiba terminals.

They also included a timeline of hose design and trends. They claimed that the basic designs of under-buoy hoses and

floating hoses are comparable. The strong crush resistance of sub-surface hoses, on the other hand, was shown to be

dependent on the water depth. This was accomplished by increasing either the wire’s area or the diameter of the helical

wire, or both. The rated operating pressure was found to be 5 to 6 times the design burst pressure. They highlighted the

abrasion and abuse that the floating hoses attached to the tanker from the buoy were subjected to. They came to the

conclusion that developing flexible rubber lines that could sustain high operating pressures and external crush, particularly

in severe environments, was critical. The hose system for an SPM terminal was also reliant on both the operational and

environmental conditions, according to the report. Physical tests are also used to develop environmental wave spectra,

such as the Joint North Sea Wave Project (JONSWAP) wave spectrum and regular wave types like Airy waves 

. Typical recent numerical model of CALM buoy model conducted in Orcina’s Orcaflex by the authors can be seen

in Figure 5.

Figure 5. CALM buoy model using Chinese lantern configuration under an ocean environment in Orcaflex 11.0f, showing

a shaded view and a wireframe view. [Model design: by Author1].

The operational requirements, such as the system’s working pressure, necessitated the transportation of well-specified

products with an adequately defined nature. They listed several factors that must be considered when determining the

length of hose strings in hose designs, including mean water depth, tide depth (low/high), maximum wave height, buoy

position relative to pipeline header, maximum mooring distance, rated working pressure, desired throughput, and

product(s) to be transported. They advised that the ultimate design of the under-buoy system should ensure that the hose

does not come into direct contact with the seabed of the moored ship under high tide conditions. They looked at the

primary design criteria for SPM hoses, underbuoy system, floating hose systems, float sinks, hose designs, and hose

diameters, and encouraged greater research from hose manufacturers, using the two case studies that were employed by

the US military on unloading from SPM tankers.

Earlier investigations on marine hoses depended on some lengthy calculations and experiments. Brady et al.  with the

help of Shell B.P Petroleum Company of Nigeria Limited, built a test apparatus that was connected to 60.96 cm (24

inches) hoses attached to a CALM buoy off the coast of Nigeria. A Medilog 4–24 small four-channel cassette recorder, a

4–366 pressure transducer, and a Beaulieu S.P 16 mm Cine camera with a lens width of 5.9 mm were also included in the

setup. To measure the strains on the hose of a monobuoy, a strain-gauge measuring spool was installed between the
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buoy manifold and the first-off buoy hose. They claimed that the hoses closest to the buoy have a lower life expectancy

because they carry the majority of the hose stresses. Correlation of the measured loads was achievable using the

statistical method described for calculating the 60 s recordings and visual records of the sea conditions. However, this

was limited due to a lack of environmental data. Rather than the trial-and-error method employed previously, this

technology enabled the investigation of the forces on buoy hoses. They came to the conclusion that the hose problem

was primarily caused by fatigue rather than high loads. As a result, increasing the hoses’ strength will improve their

performance. SPM terminals were subjected to model testing by Pinkster and Remery . The test results were also used

to describe SPM terminal features and hose phenomena found in CALM and SALM mooring systems. They also stressed

the need for selecting the appropriate scale for model tests. They cited water depth, the accuracy of the results, and the

capacity to generate the needed wave height and period at a certain scale in the basin as critical variables. Water depth,

current, wave generators, and wind are some of the variables that can be modified to affect environmental conditions.

They also went over the model testing technique, measurements, and analysis in detail. They concluded that

nonlinearities were exploited in the construction of the equation of motion, which was then integrated in small time

increments step by step. Additionally, based on uncertainties in the prototype’s drag coefficients, the inaccuracies in the

estimates of the findings obtained from the model tests due to scale effects should be applied without modification. There

was additional discussion of the Pierson–Moskowitz spectrum, wind forces, current forces, first-order wave forces,

second-order wave forces, and drag wave drifting equations. However, the methodologies for calculating these forces

were not sufficiently developed for design consistency. An industry collaboration with academia was conducted on the

feasibility of using geodesic IGW designs for offloading hoses, as reported in Nooij . Another important study that was

carried out on the load response of offshore hoses by Lassen T. et al.  involved finite element models and full-scale

testing for a 20inches-bonded hose with steel end fittings. The study presents limits based on API 17K  criteria for the

extreme load capacity assessments. The study also included a methodology for predicting the fatigue life of bonded

loading hoses’ response to applied bending, tension and pressure using a catenary configuration, with reeling loadings

repeated and significantly tensioned. The study emphasized the fatigue life prediction methods, as well as the load

impacts on the hose during reeling operations, for both rubber and steel parts.

6. FPSOs for Marine Hose Operations

There are different types of FPSOs  that are used in SPMs for transfer, loading and offloading operations. The turret

systems are the most common because of their freedom of movement, ease of anchorage, and accessibility during

mooring and deployment. A typical turret FPSO in catenary mooring is shown in  Figure 6a, and an Offloading FPSO

attached to an SPM’s CALM buoy is shown in Figure 6b. A variety of numerical models on other mooring systems can be

seen in the literature and existing industry projects on marine hose, as earlier discussed.

Figure 6. Typical Floating Production Storage and Offloading (FPSO) systems showing (a) a turret FPSO with catenary

moorings and (b) an Offloading FPSO attached to a CALM buoy using single point mooring by 2 hawsers and 3 floating

hoses.
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