
Machine Learning and Vegetable Science
Subjects: Agriculture, Dairy & Animal Science

Contributor: Prashant Kaushik

Along with essential nutrients and trace elements, vegetables provide raw materials for the food processing industry.

Despite this, plant diseases and unfavorable weather patterns continue to threaten the delicate balance between

vegetable production and consumption. It is critical to utilize machine learning (ML) in this setting because it provides

context for decision-making related to breeding goals. 
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1. ML Models

ML approaches are powerful tools that can solve complex nonlinear problems on their own using sensor data and this

allows for more informed decision-making and actions to be taken in practical scenarios with nominal human intervention.

ML techniques are constantly evolving and are used in almost every domain. Their applications, however, have some

fundamental restrictions. Data quality, model representation, and input-target variable correlations all have an impact on

prediction accuracy. Models used for machine learning tasks are divided into three main types, as shown in Figure 1.

Figure 1. Classification of models used for machine learning tasks into three major categories.

Regression algorithms, a class of supervised ML technique, generally constitute linear and logistic regression models.

Linear regression models primarily represent a linear correlation between independent and dependent variables ,

producing a straight line graph. Logistic regression, on the other hand, produces a non-linear curve with output values

lying in between 0 and 1. Furthermore, complex regression models have also been created, such as ordinary least

squares, multiple linear regression, locally linearized splines, and cubist regression .

Another ML approach, artificial neural network (ANN), is a type of information processing system that works in a similar

way to biological neural networks. This method is used to recognize non-linear and complex functions. In fact, the use of

ANN supervised learning techniques can help with both regression and classification problems . Further, deep ANNs,

also known as deep neural networks (DNNs) or deep learning (DL), allow computational models with multiple processing

layers to learn complex data . A popular DL model is the convolutional neural network (CNN), which extracts feature

maps by carrying out convolutions in the image domain.
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Support vector machines (SVMs) are also regularly used for vegetable crops . SVM is essentially a binary classifier that

creates a linear separating hyperplane to classify data instances. SVM regression algorithms are generally used to predict

a continuous response, finding a model that deviates from the calculated data by small amounts; rather than using a

hyperplane to separate data, it uses parametric models to detect minor differences . Data with a huge number of

predictors fit good with it. Yield and sensor data forecasting are two possible supervised learning applications in

agriculture .

Bayesian models (BM), a type of probabilistic graphical models in which Bayesian inference is used to initiate the

analysis, also constitute a major class of supervised ML models . Bayesian inference, unlike most ML algorithms,

requires only a small number of training samples . The Bayes’ Theorem, which serves as the foundation for BM, is

represented by the equation: P(A|B) = P(B|A) [P(A)/P(B)] . This equation is used to compute the posterior probability

(P(A|B)) based on the prior probability (P(A)) and the information gathered from the data. P(B|A) denotes the likelihood of

the observation B.

Further, Decision trees (DT) have also found their applications in data analysis for vegetable crops. DTs are used to

organize the dataset into smaller homogeneous subsets (sub-populations) while simultaneously creating a linked tree

graph . However, the model can be modified to make it simpler by eliminating branches. DT is ideal for applications that

don’t require high predictive accuracy. When compared to other ML methods, simple regression trees do not perform

satisfactorily. However, out of the different tree-based approaches, random forests (RFs) have been recognized as the

most effective and widespread ML approach .

Another ML algorithm that needs to be mentioned is ensemble learning (EL). By constructing a linear aggregate of a “base

learning algorithm,” EL models aim to improve any model fitting technique’s predictive performance . Further, a

common method such as the RF (ensemble or grouping of DTs) algorithm avoids overfitting by lowering the variance in

DT .

2. Tasks Employing ML in Vegetables
2.1. Assessment of Seed Quality

Seed quality is a crucial factor in vegetable production because it affects the yield directly . For example,

calculating the germination percentage often necessitates professional technicians manually counting and grading

germinating seedlings . Further, seed sowing quality is determined by seed composition, kernel maturity, insect

infestation, diseases, cleanliness, and germination ability, and is linked to post-sowing germination and growth conditions.

Plant genetic purity can be determined using molecular recognition, DNA analysis, isotope fingerprinting, and mineral

element analysis . In addition, in order to determine the seed vigour and germination, several techniques such as

high-performance liquid chromatography, tetrazolium tests, and conductivity tests are used . Although the majority of

these chemical and physical techniques have high precision and reliability, they come at a high cost, take a long time, and

require a lot of operators.

Plant breeding that uses high-quality seeds reduces the cost of field experiments while increasing the chances of finding a

better crop variety. However, these procedures are limited by time, subjectivity, and the destructive nature of seed quality

assessment. The present scenario demands quick, reliable, non-destructive, and objective methods for detecting seed

quality. It has been observed that variations in the chemical composition and internal anatomical features of seeds are

often linked to the loss of viability and vigor, however, these changes are difficult to detect when examined visually .

Meanwhile, data on complex seed quality traits have been successfully collected using spectrometry and X-ray imaging

techniques . The agricultural industry has been transformed significantly by recent advances in ML algorithms, which

serve as the foundation for developing models to classify products, particularly seed quality attributes. The application of

such ML models for assessment of seed quality before germination can significantly help in increasing vegetable

production with desired traits. The development of a machine learning model for assessing seed quality has various steps,

as shown in Figure 2.
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Figure 2. Step in establishment of a machine learning model for seed quality assessment.

2.2. Disease Detection and Control

The most common pest and disease control method adopted in vegetable production is to spray pesticides evenly across

the cropping area . While this method is relatively effective, it comes at a significant financial and environmental

cost. Residues in crop products, groundwater contamination, food chain contamination, and effects on local wildlife and

ecosystems are just a few examples of environmental consequences. Plant diseases have long been a major concern in

vegetable production due to their ability to reduce crop quality and, subsequently, the production . They can

cause severe damage to entire areas of planted crops, resulting in significant financial loss and a considerable impact on

the agricultural economy, especially in developing countries where a single crop or a few crops are the primary sources of

income .

In order to avoid major losses, various methods for diagnosing disease have been developed. The precise identification of

causative agents is now possible thanks to advances in molecular biology and immunology. Many farmers, however, are

unable to implement these methods due to the requirement of extensive domain knowledge or a significant amount of

money and resources. However, since these farmers bear the responsibility of feeding a large percentage of the world’s

population, extensive research has been carried out in order to develop methods that are both accurate and accessible to

the vast majority of farmers.

Precision agriculture uses cutting-edge technology to help farmers make better decisions for detection and control of

diseases that employ ML to target agrochemical inputs . With the progression of modern digital technologies, a large

amount of data is collected in real time, and various ML algorithms are used to make optimal decisions . Further,

vegetable production has been impacted by a recent surge in DL methods. Novel solutions may emerge as a result of

advances in computer vision and artificial intelligence which are far more effective and accurate than traditional methods

at making predictions, thereby allowing for better decision-making. DL methods are now used to solve complex problems

related to plant diseases in a reasonable amount of time owing to advancements in hardware technology . Examples

of ML applications in the diagnosis, prevention, and control of disease in vegetable crops are provided in Table 1.

However, there is still room for improvement in this area, particularly in decision-support systems that aid in the

conversion of large amounts of data into actionable recommendations.

Table 1. Examples of application of ML in disease detection, prevention and control .

Application ML Tool

Estimation of Phytophthora infestans infection in tomato under field condition. Neural Network

Foliar diseases of sugar beet in glasshouse conditions. Support Vector Machine

Detection of Oidium neolycopersici infestation in tomato. Support Vector Machine

Bacterial infection in Cucumis melo under glasshouse conditions. Logistic Regression, Support Vector
Machine, Neural Network

Disease detection in plant species including vegetables. Convolutional Neural Network

Gene regulatory network of the pathogenic fungus Fusarium graminearum
constructed from hundreds of transcriptomic datasets. Bayesian network inference

EffectiveT3: Identification of N-terminal signal peptide. Naïve Bayes

DeepT3: Identification of bacterial type III secreted effectors. Deep Convolutional Neural Network

T4SEpre: prediction of bacterial type IV secreted proteins. Support Vector Machine

Bastion6: prediction of bacterial type VI secreted proteins. Support Vector Machine

EffectorP: fungal effector prediction. Naïve Bayes, Ensemble Learner

ApoplastP: localization of the effector proteins. Random Forest

LOCALIZER: localization of plant proteins Support Vector Machine
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2.3. Prediction of Climatic Variations

The environment (climate), agricultural operations in vegetable production (sowing, cultivation, and harvesting), and plant

genotype all influence crop yield and productivity . The interactions and relationships (direct and/or indirect)

among these factors create a complex situation in which potential plant yield is determined. Year-to-year variations in a

genotype’s yield and phenotypic trait are caused by environmental variations and genotype × environment interaction

(GEI). Stability analysis, which estimates genotypes’ relative performance across different environments, is a perfect

solution to these yearly variations . The use of deterministic, biophysical crop models for yield modelling for the

purpose of assessing the impact of climate change accounts for a significant portion of the work in this area . On the

other hand, statistical models outperform them when it comes to predicting over larger spatial scales. Statistical models

have been used in a large body of literature to demonstrate a strong link between extreme heat and poor crop

performance because their objectives are primarily focused on outcome prediction rather than inference into the nature of

the mechanistic processes generating those outcomes. In an ANN model, plant growth indices could be used as

dependent variables while climate variables could be used as independent variables .

The linear and nonlinear relationships between variables can then be considered using powerful ANN models. Deep

phenotyping combined with AI is a useful tool for figuring out how plants interact with their surroundings . Further,

semiparametric neural networks (SNN) are a novel way to combine DNNs with parametric statistical models . When

used as a crop yield modelling framework, the SNN outperforms everything else in terms of out-of-sample predictive

performance . This, when combined with a number of complementary methods, outperforms both existing

parametric approaches and fully nonparametric neural networks in terms of efficiency and, ultimately, performance .

2.4. Crop Monitoring and Yield Prediction

Vegetable production benefits greatly from ML technology, as it makes it easier to monitor, scan, and analyze crops by

providing high-quality images . This is highly useful for assessing crop health and determining crop progress.

Farmers, for example, can use the images provided by this technology to determine whether or not their crops are ready

to harvest. Farmers can use DL and other ML techniques to assess the state of their soil . DL is also used to

determine the best times for planting and harvesting and how water and nutrients must be managed . This, of course,

enhances farming efficiency, and the return on investment (ROI) from specific crops can be predicted by considering their

price and market margin . With high-performance computers becoming more common, ML techniques becoming

more popular, and satellite imagery data becoming more widely available, there is a chance to develop fast, accurate, and

reliable methods for generating crop yield maps .

Since there are various crop growth-related biochemical and biophysical characteristics that must be measured at a fine

scale to assist in irrigation, fertilizer, and pesticide application decisions, such as leaf nitrogen concentration (N), leaf area

index (LAI), and above-ground biomass (AGB), we must track these aspects carefully . Furthermore, high-throughput

plant phenotyping creates an urgent need for precision crop monitoring that is both cost-effective and non-destructive 

. Crop monitoring in vegetable production has traditionally relied on field-based surveying and sampling, as well as

laboratory-based analyses; however, these methods are time-consuming, can be destructive, and are not practical for

large-scale applications. Alternatively, the biochemical and biophysical traits have been estimated using satellite remote

sensing . However, satellite remote sensing applications at fine spatial and temporal scales are limited by insufficient

spatial resolution and revisiting frequencies . Also, the atmospheric conditions and soil background effects may limit the

optical satellite data. Furthermore, the lack of three-dimensional (3D) canopy structural information and asymptotic

saturation phenomena inherent in optical spectral data limit its use for crop monitoring, especially in dense and diverse

canopies at advanced stages of development . Recent advances in ML and, in particular, deep learning (DL),

have enabled the development of several new analytical tools. In this direction, a recent study predicted the yield of

tomatoes employing ML and deep learning techniques under controlled greenhouses and in uncontrolled greenhouses.

The authors used recurrent neural networks (RNN) for prediction formulations based on the Long Short-Term Memory

(LSTM) neuron model of the deep learning approach. The RNN architecture calculates the parameters in conjunction with

previous yield, growth, and stem diameter values and microclimate conditions .

2.5. ML and Vegetable Breeding

Understanding a complex trait, such as yield, as a function of genetic, phenotypic, and environmental data is one of the

most critical targets of plant science and breeding. ML and other approaches are being used to classify quantitative trait

loci (QTLs)  or genomic regions related to phenotypes. In this sense, genetic associations between traits, which

calculate the degree of overlap between genetic signals, are concerned. As well, they can estimate trait values for new

genotypes with only marker data genomic prediction (GP). Vegetable breeders regularly use genomic selection
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approaches, which entails selecting material based on GPs rather than phenotypic values and marker-assisted selection,

which necessitates QTL mapping . Breeders are particularly interested in the genes that underpin QTLs. A variety of

architectures for GP, with the help of DL approaches, have been produced . Although some researchers have

investigated ML methods for QTL mapping (primarily for pre-screening), their use is constrained because practitioners

often need p values or other confidence measures to validate the outcomes.

Random-effects are used to estimate GP and effect sizes simultaneously . In contrast to parametric random-effects

models, ML has several advantages. First, manually designed features are needed where secondary characteristics, such

as picture meaning, are more complicated. Second, ML methods (especially DL) could be more resilient in situations

where common assumptions such as Gaussianity are breached, such as for traits calculated on an ordinal scale. Third,

when a portion of the genetic variation is non-additive, ML may increase accuracy . However, ML falls short of random-

effects models for certain characteristics. In general, plant breeding in the private sector still relies heavily on rigorous

yield assessment in several environments. With a few variations, phenotypes may be very multidimensional, and there are

typically hundreds of genotypes. Any recent developments in ML could help solve this problem. It is a big challenge to

predict genotype rating within each new setting based on environmental variables that characterize G × E interactions;

random-effects approaches were used to show that this is possible using ML approaches . More analysis is required to

define the most significant environmental variables and realistic data-driven environmental features. The question of when

and how they will evolve GP for the target trait, now that these traits are available, emerges. This is true for a single

secondary trait with a high enough heritability and genetic resemblance to the target trait. Several authors have used

omics, environmental, or management data to forecast yield in the absence of marker data; see, for example, . While

such models cannot make genomic choices, they can help policymakers and farmers make more educated decisions.

These algorithms propose causal relationships between phenotypes that are more closely related to the results, and they

may also incorporate previously defined functional relationships. These approaches’ importance lies in their ability to

forecast treatment conditions, such as what will happen if different situations or coping mechanisms are employed, or if a

gene is silenced.

2.6. ML and Vegetable Biotechnology

Agrobacterium-mediated gene synthesis is a well-known technique for plant gene transformation and genetic alteration

. For effective gene transfer, the Agrobacterium strain, the period of inoculation, and select antibiotic concentrations

must be fine-tuned . Moreover, it was determined that resistance to Agrobacterium-assisted gene transformation is

easily observable using ML algorithms . Polyploidy is often utilized to increase the productivity and vigor of plants .

This results in a close correlation between the plant genotype and the antimitotic agent in artificial polyploidy induction .

Many in vitro-based breeding strategies depend on in vitro regeneration, which has a broad variety of applications in plant

breeding . Micropropagation (proliferation) and in vitro regeneration have clear effects on both in-situ and ex-situ

conservation. In vitro culture is an effective tool for widespread reproduction, germplasm survival, and bioactive

compound processing in several endangered uncommon plant species, including medicinal plants . A variety of

variables influence the fate of cultured cells’ in vitro plant regeneration . The mixture and interactions between these

variables are responsible for the in vitro plant regeneration process’s multifactorial nature. When other factors are

introduced, the scenario becomes incredibly difficult to comprehend. Manipulation of the basal medium has been used as

a promotion strategy to enhance in vitro studies’ efficiency . The cytokinin/auxin ratio is also essential in in vitro tests.

The ANN model correctly estimated the number and length of microshoots. In the ANN’s sensitivity study, the immersion

time was deemed to be the most critical element affecting pollution level and explant viability. Further, ANNs are often

used to forecast plantlet growth from embryos, calculation of cell culture biomass, simulation of temperature distribution in

a culture vessel, identification and calculation of in vitro induced shoot weight, and clustering of in vitro regenerated

plantlets .

2.7. ML and Vegetable Genomics

Understanding the movement of information is vital for the study of vegetable sciences and crop improvement, but how to

do so is a mystery. This chasm is being filled by advances in two fields of analysis in particular. Association research

between molecular phenotype and terminal phenotype benefits from a shorter recognition rail and includes less

information transfer than genome-wide connection studies and transcriptome wide-interaction studies. Interaction imaging

was used to identify genetic loci associated with molecular or terminal characteristics in natural plant populations . Due

to widespread linkage imbalance among the neighboring variants and impeding genetic enhancement of plants by

genome editing, variants underlying phenotypic variance are difficult to distinguish. On the other hand, advancements in

molecular biology over the last half-century have assisted in the discovery of many molecular pathways that control the
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flow of data from DNA to RNA and protein, and the assortment of such data is determined by a number of omics methods

based on sophisticated sequencing techniques .

CNNs have at least one convolutional layer, which allows them to derive features from a continuous signal (for example,

weather data as a time series, a plant image, or a DNA/RNA sequence). A DNA/RNA sequence of N base pairs can be

used to train a CNN, and it can be defined as a one-hot encoded 4 N matrix . Even if local motifs exist in separate parts

of the input, CNNs can catch them. Convolutional layers often reduce the number of weights that must be learned as

compared to fully connected layers. Many CNN uses in plant biology are offered as an interactive tutorial for building a

CNN to investigate DNA-binding motifs . As a consequence of this operation, recurrent neural networks (RNNs) acquire

memory capabilities. When dealing with time series inputs, RNNs may also handle a range of input sizes, which is

beneficial. When using ML to solve problems in genomics , there are a few critical aspects to bear in mind. The model

should generalize well, which means it should act consistently between test and training sets. Several variables, such as

model complexity, high dimensionality, and so on, can lead to overfitting. Large-scale phenotyping trials are often

expensive; estimating genomic variant phenotypes almost always costs more than the amount of plant genotypes .

Overfitting is often concealed and ignored when confronted with genomics problems.

As a result, it seems plausible to anticipate that selecting causative variations can be performed by combining models that

“understand” the information flow from DNA to molecular phenotypes with interaction mapping investigations that connect

molecular phenotypes to behavioral traits. Indeed, in human genetics, such a structure has been shown not only to be

probable but also successful in revealing variants (including rare alleles) at the root of certain genetic disorders . On

the other hand, the vegetable community is yet to benefit from this trend entirely. DL models have made significant

progress in developing molecular phenotype prediction and we believe that such a device would help identify deleterious

and adaptive variants in the genome, which would be essential for potential crop editing-based genetic enhancement.

Any protein’s function is directly linked to its tertiary structure. Secondary composition, transmembrane topology, signal

peptides, and enzyme dynamics are some of the protein properties that can be integrated and studied to reveal the

tertiary structure. Google’s Alpha Fold recently made news as it used AI to predict a protein’s tertiary structure. On the

other hand, DL algorithms have shown promise in a variety of fields . Still, their utility in predicting protein–protein

interactions (PPI) has been constrained by inadequate coverage and noisy data.
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