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Thioredoxin-interacting protein (TXNIP), widely known as thioredoxin-binding protein 2 (TBP2), is a major binding
mediator in the thioredoxin (TXN) antioxidant system, which involves a reduction-oxidation (redox) signaling
complex and is pivotal for the pathophysiology of some diseases. TXNIP increases reactive oxygen species

production and oxidative stress and thereby contributes to apoptosis.

thioredoxin TXNIP metabolic disorders neurological disorders TXNIP modulator

| 1. The Role of TXNIP in Diseases
1.1. TXNIP in Diabetology

Diabetes mellitus (DM) is a metabolic disorder regulated by a glucose-lowering hormone known as insulin
produced by pancreatic B-cells; the release of insulin is not adequate, which results in DM @&, The anomalous
reaction of target tissues to insulin-mediated effects, combined with glucose production-promoting hormone
glucagon, may enhance aberrant gluconeogenesis leading to hyperglycemic conditions, which predispose to T2DM
[Bll4l TXNIP is a prominent regulator of glucose homeostasis through regulating gluconeogenesis in the liver and is
implicated in adaptation to acidosis with ATP generation B, Although chronic hyperglycemic conditions promote
several metabolic vascular complications associated with high death rates in diabetic patients [, they may include
an increase in the formation of advanced glycation end products (AGEs) and ROS B8, Diabetic models show that
ROS are not the only factor that promotes DM, but the overall activity of the antioxidant system may be disrupted in
DM . TXNIP deletion appears to be pro-oxidant, and reported to lessen the ROS production in vascular smooth
muscle cells indirectly implying an increase in the antioxidant potential of TXN in vitro 19, Moreover, in mouse
models of glucose-induced DM, glucose enhances TXNIP expression, which can further induce excessive ROS
production in the mitochondria and cytosol. TXNIP is an endogenous inhibitor of the main antioxidant mechanism,
i.e., the TXN system, and hyperglycemic conditions have been shown to play a key role in vascular diabetic
complications. Upregulated TXNIP is observed in peripheral blood and cultured cells from a diabetic mouse model
as well as in pancreatic islets of DM patients . Additionally, TXNIP is important for the promotion of angiogenesis
because TXNIP activates and regulates the main angiogenic cytokine known as vascular endothelial growth factor
(VEGF). TXNIP overexpression in diabetes regulates the activity of the key cytokine VEGF in a glucose-sensitive
manner, whereas a TXNIP knockdown by small interfering RNA (siRNA) can overcome the diabetes-related
pathologies of angiogenesis and arteriogenesis and may help to recover an ischemic hindlimb 12, Moreover,
supporting action on islet biology was concurrently revealed in another study through reversion of impaired

endothelial cell angiogenic function, generation of VEGF, and sensitivity to VEGF activities 2137, Recently, TXNIP-

https://encyclopedia.pub/entry/11567 1/21



Thioredoxin-Interacting Protein (TXNIP) | Encyclopedia.pub

knockdown has shown improved anti-senescence and anti-inflammation effects on H9c2 cardiomyocytes under
doxorubicin-associated cardiomyopathy 141,

Vascular abnormalities in diabetic patients may be attributed to chronic inflammatory responses caused by NLRP3
inflammasome activation. TXNIP also stimulates early apoptotic signals by interacting with inflammation marker,
vascular cell adhesion molecule 1 (VCAM-1) in human aortic endothelial cells (HAECs) induced by high-glucose or
overexpression of ChREBP, a major transcriptional activator of TXNIP, and impairs nitric oxide (NO) bioactivity;
whereas, finally, exaggerated levels of NOs suppress NLRP3 inflammasome activity [EILSII6  Moreover,
pyroptosis which is also integrated to the NLRP3 inflammasome activation is associated with diabetes,
hypertension, and hyperlipidemia 4. ERS can control pyroptosis in an alliance of TXNIP with NLRP3 18 The
literature provides remarkable evidence of elevated ROS and TXNIP levels in diabetic-condition induced NLRP3
inflammasome activation and successive release of caspase 1, IL-13, and IL-18 (Figure 1). Thus, ROS—TXNIP-
NLRP3 inflammasome signaling has a mechanistic link with vascular aberrations in diabetic conditions. The
NLRP3 inflammasome directs the obesity-associated danger signal, giving rise to obesity-induced inflammation
and insulin resistance. Nevertheless, inhibition of NLRP3 in a mouse model protects against obesity-induced
inflammasome activation in the fat-associated pits and liver, and improves insulin signaling 2. Remarkably,
NLRP3 and TXNIP knockout mice show improved glucose tolerance and insulin sensitivity in a T2DM model 18],
Nonetheless, diabetes complications include several complex pathologies, such as nephropathy, retinopathy,
neuropathy, ischemic heart disease, peripheral vascular disease, and cerebrovascular disease (macrovascular)
(Eigure 1).
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Figure 1. The role of TXNIP in the development of various diseases. Elevated TXNIP expression may lead to the
development of various diseases while contributing to these pathologies via distinct mechanisms. NAFLD: non-
alcoholic fatty liver disease; ROS: reactive oxygen species; TXNIP: thioredoxin-interacting protein; Upregulation

(1); Downregulation (1).

1.1.1. Diabetic Nephropathy (DN)
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Diabetic nephropathy is the most common cause of renal disease and is one of the microvascular complications of
DM. Patients show associated symptoms such as proteinuria, abnormal blood hemodynamics, glomerulosclerosis,
and thickening of the glomerular basement membrane, which is further protected by podocytes and endothelial
cells (2021 Accumulating evidence suggests that inflammation is a major factor in the pathogenesis of DN [22123]
(24 The primary mechanism of inflammation control is mediated by the upregulation of ROS, which is in turn
controlled by the activation of the nuclear factor-kB (NF-kB) pathway and mitogen-activated protein kinase (MAPK)
pathway. In addition, ROS act on the TXNIP-TXN complex, thereby causing it to dissociate, and the dissociated
TXNIP functions as a ligand that binds and further activates the NLRP3 inflammasome canonically 23, The
importance of the mitochondrial ROS—-NLRP3 inflammasome mediated pathway in DN has been inferred from a
knockout mouse model (28, Recently, in vitro and in vivo studies of glucose-induced TXNIP’s effects on podocyte
apoptosis in a DN mouse model suggested that TXNIP deficiency may reduce podocyte apoptosis by inhibiting
mammalian target of rapamycin (mTOR) or MAPK signaling cascades [Z. TXNIP deficiency is characterized by

attenuated renal injury in diabetic mice, which means that TXNIP could act as a therapeutic target in DN [27128],
1.1.2. Diabetic Retinopathy (DR)

In diabetic conditions, high-glucose—induced overexpression of TXNIP leads to early apoptosis of neurons, glial
activation, and epithelial retinal pigment injury 22, Recent in vivo studies showed that in retinal microvascular
endothelial cells, inhibition of the ROS-induced TXNIP/NLRP3 cascade by vitamin D3 exerts protective effects
against anomalies of retinal structure B9, Therefore, inhibition of ROS-induced TXNIP production in diabetic mouse

models can alleviate the apoptosis of retinal cells just as in DN 2729,

1.1.3. Diabetic Neuropathy

A serious complication of DM, unfortunately poorly studied to date, is characterized by inflammation and associated
with sensation loss in peripheral parts of the body or numbness in extremities, such as feet, and is closely
associated with TXNIP B, The literature supports the idea that TXNIP/NLRP3-mediated signaling leads to IL-1p
and IL-18 activation, resulting in canonical inflammation and worsening of diabetic pathogenesis. In contrast,
inhibition of this cascade reduces the apoptosis of neurons and delays neuropathic symptoms in prediabetic
patients [18]. Recently, it was demonstrated that NF-kB is a crucial regulator of histone deacetylase 2 (HDAC2) and
is involved in neuropathic pain through downstream activation of the TXNIP/NLRP3 inflammasome [32I33],
Furthermore, overexpression of miR-23a in spinal glial cells and miR-183 in microglia has been proposed to relieve
neuropathic pain in peripheral body parts BHE4. Thus, TXNIP might affect diabetic neuropathy by amalgamating

inflammation and oxidative stress.

1.2. TXNIP in Neurology

Neurological disorders such as dementia, AD, PD, SAH, and stroke are the most serious diseases of the modern
era. Although there are distinct clinical insights into these pathologies, extensive literature suggests that oxidative
stress, mitochondrial damage, inflammation, and dysregulated calcium control contribute to the above diseases 22!
[36I[37](381[391140]  TXNIP is known to link cellular redox events, mitochondrial redox events, and ERS regulation to
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pathological inflammation and apoptosis in brain diseases. It also acts as a key mediator in neurodegenerative
diseases such as AD and PD 4142l (Figure 2).

1.2.1. Ischemic/Reperfusion Injury

Ischemic stroke injury is characterized by a blockage in the blood supply to the brain, thereby resulting in sustained
deprivation of oxygen supply and leading to brain cell death and damage “3l. TXNIP is overexpressed in ischemic-
stroke—induced blood—brain barrier dysfunction and myocardial ischemia/reperfusion injuries B244 TXNIP causes
a redox imbalance and leads to inflammasome activation, whereas TXNIP inhibition is an endogenous inhibitor of
the thioredoxin system, which helps to reverse ischemic injuries BZ. It has been shown that hypoxic conditions in
the ischemic pancreatic cancerous tissue affect the promoter of TXNIP and, thus, its transcriptional upregulation,
which is equally influenced by HIF-1a 431461 Additionally, TXNIP regulates mitochondrial bioenergetics via HIF-1a
(an essential regulator of ischemia) modulation in hindering, and peroxisome proliferator-activated receptor la
(PPAR-10), as upregulating mitochondrial oxygen consumption 47481491 Nevertheless, the shuttling of cytosolic
TXNIP and re-recruitment to mitochondria activates ASK-1, leading to cell death B9, In the hippocampus, ERS-
induced TXNIP/NLRP3-inflammasome activation leads to ischemic neurotoxicity 1. Moreover, a knockout of
TXNIP and pharmacological inhibition of TXNIP are reported to protect against brain infarction and neurological
diseases in mouse models 2. So far, the idea to inhibit TXNIP has been elaborated in terms of brain hemorrhage

or ischemic stroke, where this protein could serve as a therapeutic target.

1.2.2. TXNIP in Subarachnoid Hemorrhage (SAH)

SAH is a cerebrovascular neurological fatal disorder that reduces brain perfusion and causes bleeding in the space
between the brain and the adjacent membrane (subarachnoid space); the major cause of SAH morbidity is early
brain injury (EBI) B9, Elevated levels of TXNIP mRNA expression are observed in the patients’ brain samples.
Furthermore, a rabbit SAH model has been devised, which features elevated TXNIP levels and decreased TXN
reductase expression (22 Concurrent studies have shown that the inhibition of TXNIP via siRNA suppresses
apoptosis and alleviates EBI 9. Recent studies have suggested that ERS induced via PERK and after
downstream development of SAH, can initiate EBI by influencing apoptosis B4l Further research revealed that
TXNIP links ERS with neuronal apoptosis, which in turn intensifies EBI B2, TXNIP interconnects oxidative stress
and neuroinflammation to SAH and EBI; as supporting evidence, apelin-13/apelin receptor (APJ) was recently used
to reduce EBI via suppressing ERS-associated TXNIP/NLRP3 inflammasome activation and AMP-dependent-
protein kinase (AMPK)-dependent oxidative stress following SAH in rats B8, Furthermore, the white matter injury
occurring at the early stage of SAH has not been addressed well so far. Recently, the damage caused by the SAH
peroxisome in mouse models was found to escalate white matter injury to SAH, and was partially mediated by

TXNIP and glycerone-phosphate acyl-transferase pathways 281,

1.2.3. Alzheimer’s Disease (AD)

The involvement of TXNIP in AD is mostly associated with inflammation; accumulated data indicate overexpression

of TXNIP in the brain via amyloid-B (AB) exposure B7B8l and also TXNIP remained an exclusive marker in
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microglia, neurons, astrocytes, and endothelial cells B2, The prevalent idea proposes that TXNIP is an essential
mediator of NLRP3 inflammasome activation and the eventual formation of activated caspase 1 [41l. Preventing the
interaction of TXNIP with NLRP3 will, therefore, have positive effects by reversing or restraining AD pathology 42
(69 Another idea that supports the TXNIP link to AD is glucose control and metabolism associated with
neurodegeneration 1. Although insulin-like metabolic deformities associated with AR functions are vague,
however, a hypothesized term diabetes type-3 has been suggested recently, for integrated cerebral diabetes,
categorizing insulin resistance as independent and overlapping in a few onsets of diabetes with ultimate lack of
neuronal response to insulin-related signaling and a decrease in glucose metabolism 61, Coequal clinical studies
confirm that T2DM positive data remained significantly associated with the neuropathology of AD in the presence of
ApoE &4-allele carrier-patients 2, Epidemiological data validation confirms that insulin-resistant patients are prone
to AD-associated dementia and that antidiabetic medication was effective in reducing or reversing risk factors in AD
(63 Recent studies suggest that T2DM (neurovascular-disorder) has not shown any significant correlation with
associated biomarkers in mild cognitive disorders in AD, and PD (neurodegenerative-disorders) pathologies 84,
although the common biomarkers they tested for reference disorders do not include TXNIP which can be studied in
this context. Conversely, it is also suggested that both diseases significantly correlate at early onsets of AD-
symptoms 641 At present, it is an emerging concern since anti-diabetic Food and Drug Administration approved
insulin-sensitive drugs are showing positive effects on dementia risk factors via blocking TXNIP expression

downstream associated with inflammatory signaling B3I(68(67],
1.2.4. Parkinson’s Disease (PD)

PD is the second most common neurodegenerative disease among the elderly and includes motor symptoms such
as tremors, postural instability, and bradykinesia 88, PD is characterized by the accretion of filamentous
aggregates, with alpha-synuclein (a-syn) as primary precursors, as well as dopaminergic-neuron loss B9 The
prevailing theory suggests that the loss of dopaminergic neurons is associated with apoptosis, autophagy, and
necrosis 172 Recent data uncovered pyroptosis with a release of proinflammatory cytokines including IL-1B, IL-
18, and nuclear protein high mobility group box 1 [8I74, As pyroptosis is implemented by six conserved domain
pore-forming proteins; among them, GSDMD (a gasdermin) is likely cleaved by caspases 11, 4, and 5 in humans
[B8I75] |t is claimed that pyroptosis is primarily associated with the activation of NLRP3, which is further on
upstream is integrated with TXNIP. It has also been confirmed that FOXOL1 is upregulated in PD targeted by mi-
RNA 135b in MPP+ treated SHSY5y and PC12 cell-lines, whereas the FOXO1-TXNIP—TXN activation cascade
interactions have already been confirmed from the perspective of TXNIP regulation Z8IZI8 Additionally, the
majority of data highlight the participation of microRNAs and other mediators in PD pathology 2% Recently,
downregulation of miR-135b was shown to have a protective effect against PD pathology via promoting FOXO1
upregulation, TXNIP-mediated NLRP3 inflammasome activation, and pyroptosis 9. TLR4 (Toll-like receptor 4) has
an explicit connection to NLRP3 in the presence of myeloid differentiation of primary response protein 88 (MyD88)
[B182] Many studies have reported improvement in PD symptoms after prevention of NLRP3-dependent
pyroptosis. Indirect control inhibits the TLR4-MyD88—-NF-kB signaling cascade, thereby reducing the production of
NLRP3, pro-IL-1B, and pro-IL-18. The direct approach involves suppression of the TXNIP-NLRP3-caspase 1
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signaling cascade 82, These studies suggest that inhibition of pyroptosis or administration of TXNIP may be a

novel therapeutic strategy against PD through direct or indirect NLRP3 activation.

| 2. TXNIP Is a Potential Therapeutic Target

TXNIP has attracted considerable attention regarding drug development owing to its multiple functions and
involvement in metabolic disorders, inflammation, neurodegenerative disorders as well as cancer. Overexpression
of TXNIP can be caused by various signals, such as nutritional stimuli, glucose, amino acids, and insulin,
suggesting the significance of TXNIP in the regulation of metabolic and neurodegenerative diseases [831(841[85][86]
By contrast, TXNIP being a participant of apoptosis inducer and metabolic re-programmer works as a tumor
suppressor; therefore, downregulation of TXNIP contributes to cancer progression [EZIE8I80  5ithough such
anticancer functions of TXNIP are associated to apoptotic pathways 2122 Thus, TXNIP agonist might help in
anticancer treatments, raising yet another debate. In particular, accumulated data provided strong evidence that
TXNIP inhibition is a potential therapeutic approach for metabolic disorders and associated diseases 2393 On a
cellular level under oxidative-stress the metabolic functions of TXNIP are regulated partially independent of TXN1
241 50 far, there is no specific inhibitor for TXNIP in clinical trials. Efforts are needed to develop novel TXNIP
specific inhibitors to de-intensify the pro-oxidant activities of TXNIP. Although, several in vitro and in vivo studies
are underway that either antagonize TXNIP directly or block it through extracellular and intracellular signaling by

means of inhibitors, such as small-molecule inhibitors, phytochemicals, and peptides (Table 1).

Table 1. Therapeutic modulators of TXNIP. COPD: chronic obstructive pulmonary disease; CTCL: cutaneous T-cell
lymphoma; DN: diabetic nephropathy; DR: diabetic retinopathy; HSCs: hematopoietic stem cells; TIDM: type 1
diabetes mellitus; T2DM: type 2 diabetes mellitus.

Compound Diseases and

Type Target Therapeutic Status Referencel/Clinicaltrials.gov
yp Name g p g
Effects
Small-molecule T1DM Phase Il (95](961[97] NCT02372253
drug Verapamil Calcium
P channel/TXNIP Diabetic . [98]
. In vivo
cardiomyopathy
Diltiazem Vel Diabetes In vivo (93]
channel/TXNIP
) NLRP3/TXNIP/ Inflammation, . [99]
Allopurinol ROS/PPARa diabetes Invivo
Vorinostat TXNIP tumors In vivo 200
Trichostatin A HDAC/TXNIP DR In vivo (101][102]
Imatinib ABL-IRE1a/TXNIP Diabetes In vivo 103
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Compound

Diseases and

Type Name Target Therapeutic Status ReferencelClinicaltrials.gov
Effects
. Calcium 104
Taurine channels/TXNIP T1DM, T2DM Phase Il NCT01226537
Metformin TXNIP T2DM In vivo 105
Troglitazone Trx2/Askl Cell injury 106
SRI-37330 TXNIP Diabetes, obesity  Preclinical 107
. NLRP3, TXNIP, . [99]
Quercetin ROS, and PPARG T1DM Preclinical
TXNIP/MAPKSs, Inflammation,
Fisetin TLR4/NF-kB, and antioxidant, In vivo [208]109]1110]
ROS anticancer actions
Luteolin TXNIP/NLRPs .ant|OX|dar1t, In vitro 11y
inflammasome inflammation
T2DM,
Salidroside TXNIP/NLRP3 nephropathy, In vivo [112)113
neuroinflammation,
antioxidant
Cepharanthine  TXNIP/NLRP3 am"'”ﬂg”,\]matory‘ In vivo (L149215]
Phytochemicals
Piperine TXNIP/NLRP3 a”t"'”ﬂgr,zmatory' In vivo [L15]116]
Antioxidant, anti-
Apocynin NLRP3/TXNIP inflammatory, heart ~ In vitro L
problems
Antioxidant, anti-
Puerarin NLRP3/TXNIP inflammatory, heart In vitro L7
problems
Curcumin TXNIP diabetic vascular In vivo 118
inflammation
Ginsenoside antidiabetic, anti-
TXNIP/NLRP3 inflammatory In vitro (11911201
(compound K) .
actions
Peptides CB3 p38MAPK/INK/NF- Neurological In vivo [121][122]
kB diseases,

Several small-molecule drugs have been reported, most of which are being used or under clinical investigation for

metabolic and neurological disorders. Verapamil and diltiazem, a nondihydropyridine calcium channel blocker, are
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Diseases and i
. o . ression
Type Sluls T Target Therapeutic Status ReferenceICI|n|caltr|als.govp
Name [124][95][98]
Effects .
_ diabetes, e insulin
inflammation
in which
Neurological .
p38MAPK/INK/NF- diseases, . [121]1122] » than in
CB4 . In vivo
KB [97] diabetes, n T1DM
inflammation
son why
verapallin uves TN13 TXNIP-p38 Alffects aging of In vivo 123 loes not

HSCs

Other drugs, such as allopurinol and quercetin, have been found to prevent the overexpression of TXNIP in the rat
liver and activation of the NLRP3 inflammasome, and upregulation of sterol-regulatory element—binding protein 1c
(SREBP-1c), SREBP-2, liver X receptor a (LXRa), fatty acid synthase, and ROS while downregulating PPARa 221,
Moreover, several other small-molecule drugs, for example, telmisartan 228! bakuchiol 227, vorinostat (SAHA) (200,
trichostatin A (TSA) 1921128 imatinib 193] taurine 194 and troglitazone %! can inhibit the expression of TXNIP.
Thielen L.A. et al. recently identified a small-molecule inhibitor, SRI-37330, that effectively suppresses TXNIP
expression in rats, mice, and human pancreatic islets. In addition, treatment with SRI-37330 reduces glucagon
secretion and hepatic glucose production and reverses streptozotocin-induced diabetes 197, Nonetheless, further

studies are warranted to determine the therapeutic window for clinical trials.

Phytochemicals play a major role in the curative effects of plant-derived products on different diseases, including
cancers, autoimmune diseases, and neurological and metabolic disorders. Fisetin and luteolin are natural
flavonoids found in vegetables and fruits such as apples, grapes, strawberries, onions, and persimmon. Several in
vivo studies have revealed that fisetin treatment of mice downregulates proinflammatory cytokines and ROS
production and inactivates TXNIP/MAPK and TLR4/NF-kB signaling 298], Thus, fisetin exerts beneficial effects on
the antioxidant system and diabetes-related diseases as well exhibits anticancer activities and anti-inflammatory
properties 29110l Treatment with luteolin protects podocytes from high-glucose induced apoptosis in the mouse
podocyte cell 5 (MCP-5) cell line and blocks TXNIP and NLRP3 inflammasome 122 Similarly, salidroside
suppresses cell proliferation, high-glucose induced oxidative stress, and extracellular-matrix accumulation in rat
glomerular mesangial cells (HBZY-1) by inhibiting the TXNIP/NLRP3 signal [£12], Alkaloids such as cepharanthine
and piperine are widely used as antineoplastic, antiallergic, and anti-inflammatory agents and are known to
ameliorate diabetic neuropathy R4S \whereas piperine stimulates digestive enzymes and lowers lipid
peroxidation (1161,

Other phytochemicals have also shown promising effects against different diseases either in vitro or in preclinical
models. Among them, metformin 293 apocynin 139 curcumin 131 and ginsenoside (compound K) (29 exert

significant beneficial effects on the antioxidant system, inflammation, cancer, DM, and on many other disorders.

Peptides also contribute to inhibiting TXNIP and are useful for the prevention of several disorders (neurological and
metabolic disorders). Thioredoxin-mimetic (TxM) peptides, Ac-Cys-Pro-Cys-amide (CB3), and Ac-Cys-Gly-Pro-Cys-
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amide (CB4), prevent ROS-related damage by inhibiting p38, MAPK, and c-Jun NH2-terminal kinase (JNK) and by
preventing NF-kB nuclear translocation (12111221 CB3-treated male leptin-receptor-deficient Zucker diabetic fatty
(ZDF) rats show lower inflammation and decreased TXNIP/TBP-2 expression. By contrast, the AMPK pathway is
activated, which results in the inhibition of the mTOR-p70S6K pathway. Furthermore, CB3 and CB4 induce
apoptosis and reduce caspase 3 cleavage and PARP dissociation in human neuroblastoma SH-SY5Y cells. It has
been suggested that these peptides may have a potential to prevent neurological disorders and DM 222, Another
peptide, TN13, derived from the TXNIP-p38 interaction motif, inhibits the TXNIP—p38 interaction and significantly
revives aged hematopoietic stem cells (HSCs). This finding indicates that the interaction between TXNIP and p38

activates the regulatory mechanism of HSC aging and is a possible therapeutic target for the reactivation of aging
HSCs [123],

In recent years, researchers have recognized the role of microRNAs as essential mediators in the control of gene
expression via post-transcriptional regulation. Here, we discuss some microRNAs that are potentially relevant for
regulating TXNIP and inflammatory diseases (Table 2). MiR-20a negatively regulates the NLRP3 inflammatory
response in rheumatoid arthritis fibroblast-like synoviocytes. The overexpression of miR-20a reduces TXNIP
expression and downregulates the NLRP3 inflammasome and subsequent secretion of cytokine IL-1[3, caspase 1,
and matrix metalloproteinase 1 (MMP-1) 132 Furthermore, the expression of miR-23a is decreased in the blood
plasma of patients with central nervous system (CNS) diseases (e.g., ischemic stroke or multiple sclerosis), it also
regulates neuropathic pain 13311341 Besjdes, downregulation of miR-23a increases chemokine CXC receptor 4

(CXCR4) expression in a neuropathic pain model 34,

Table 2. The miRNAs that regulate TXNIP. ALD: alcoholic liver disease; RA FLS: rheumatoid arthritis fibroblast-like
synoviocytes.

Molecular

miRNAs Target Type of Disease Molecular Mechanisms Reference
miR- Downregulation of TXNIP expression; 132
20a TANIP RAFLS Downregulation of NLRP3, ASC and caspase-1
MiR- Neuropathic pain, Inhibition of CXCR4; Downregulation of the [34][133]
CXCR4 . . TXNIP/NLRP3 [134]
23a multiple sclerosis .
inflammasome
Increased fibronectin production in diabetic
miR- Not DN, kidney nephropathy; Activation of the p38 MAPK/TXNIP [135][136]
377 defined podocyte injury pathway; Upregulation of the NLRP3
inflammasome
. Retinal . )
miR- TXNIP . Instgblllty of TXNIP m'RNA, [137][138]
17-5p o . Downregulation of the NLRP3 inflammasome
hypoxia-ischemia
miR- Reduction of pyroptosis; Downregulation of the 78]
148a TANIP ALD NLRP3 inflammasome
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In addition, several other microRNAs have modulatory functions in the pathogenesis of some diseases. For
instance, miR-377 overexpression promotes oxidative stress and increases the production of fibronectin in diabetic
neuropathy 13511361 ynder stress conditions (ERS), the levels of miR-17-5p decrease, leading to inflammasome
activation and causing retinal inflammation 371381 |n contrast, miR-148a inhibits the expression of TXNIP and
prevents the activation of the NLRP3 inflammasome [8, MiR-33 increases ROS production and regulates the

activity of the NLRP3 inflammasome in chronic inflammatory diseases 139,

Major efforts are needed to develop drugs that can specifically inhibit TXNIP and are highly effective in overcoming

neurological and metabolic abnormalities.
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