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Polyphenols are natural organic compounds produced by plants, acting as antioxidants by reacting with ROS.

These compounds are widely consumed in daily diet and many studies report several benefits to human health

thanks to their bioavailability in humans. However, the digestion process of phenolic compounds is still not

completely clear. Moreover, bioavailability is dependent on the metabolic phase of these compounds. The LogP

value can be managed as a simplified measure of the lipophilicity of a substance ingested within the human body,

which affects resultant absorption. The biopharmaceutical classification system (BCS), a method used to classify

drugs intended for gastrointestinal absorption, correlates the solubility and permeability of the drug with both the

rate and extent of oral absorption. BCS may be helpful to measure the bioactive constituents of foods, such as

polyphenols, in order to understand their nutraceutical potential. There are many literature studies that focus on

permeability, absorption, and bioavailability of polyphenols and their resultant metabolic byproducts, but there is

still confusion about their respective LogP values and BCS classification. 

polyphenols  metabolism  bioavailability  LogP  biopharmaceutical classification system

1. Introduction

Phenolic compounds (PCs) are secondary plant metabolites, characterized by an aromatic ring and several

attached hydroxyl groups. These compounds offer protection to the plant from pathogens, free oxygen radicals, UV

rays, and parasites .

Polyphenols represent a large and varied group of at least 10,000 known different compounds that could be unified

by the presence of one or more aromatic rings with one or more hydroxyl groups in their chemical structure .

For some plant products, for example, some exotic fruits or cereals, the composition of polyphenols is still poorly

known . Regarding dietary PC, the current known compounds are about 8000 variants and they are naturally

found in common fruits, vegetables, and beverages and, according to the number of phenolic rings they contain,

they could be classified into main four subclasses:  flavonoids, including flavonols, flavones, isoflavones,

flavanones, anthocyanidins, and flavanols; phenolic acids subclass, which is divided between those compounds

derived from hydroxybenzoic acids, such as gallic acid, and those derived from hydroxycinnamic acid, like caffeic,

ferulic, and coumaric acid; and stilbenes and lignans (Figure 1) . In addition to these, there are other

subclasses that are not included among the currently known, i.e., alkylphenols, curcuminoids, furanocumarins,

hydroxybenzaldehydes, hydroxybenzoketones, tyrosols, and so on .
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Figure 1. Dietary polyphenols known subclasses scheme.

PCs are derived from a common biosynthetic pathway, involving precursors from the shikimate and/or the acetate–

malonate pathways . In addition, their role in the prevention and improvement of human health has been widely

demonstrated. There is growing evidence to support antioxidant, anti-inflammatory, anti-tumoral, and anti-

cardiovascular disease roles attributable to polyphenols . There are numerous different

types of PCs, all characterized by different chemical structures that have distinct properties . It was reported that

the specificity of the health benefits, conferred by a single PC, is based on specific chemical classes .

As PCs are bioactive compounds, it is important to study their distribution within the human body. More specifically,

in order to express their therapeutic effect, PCs should undergo pharmacological metabolism reactions, with

consequent conversion into more soluble metabolites, and subsequent excretion . From this perspective, it is

important to study the health potential of PCs, and this may be done through the biopharmaceutical classification

system (BCS). This classification evaluates the capacity of drugs (and thus also bioactive compounds) to pass

through lipidic biological membranes as well as to interact with aqueous solutions during their metabolism within

the human body. Hence, BCS allows to characterize the health capacities of a PC.

The aim of this work is to analyze the nutraceutical potential of 10 dietary PCs, in terms of intestinal absorption,

permeability, solubility, and BCS classification of these compounds, and to compare them with the literature

currently available, in order to establish an association between all these factors. Furthermore, it was chosen to

focus this work only on 10 dietary PCs because they belong to most of the subfamilies of known polyphenols, and

thus can be representative for an overall evaluation of the beneficial prospective of dietary PC present in nature.

Besides, in the current literature, there is enough and exhaustive information on permeability, solubility, and

especially BCS classification only on these PCs, univocally directing the discussion of this review to them.

2. Polyphenol Metabolism

2.1. Metabolism Course
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In mammals, PCs are subject to both phases I and II of drug pharmacokinetic metabolism, respectively, as

represented in  Figure 2. PCs are ingested mainly in a conjugated form, as O-glycosides (step 1,  Figure 2).

Metabolism of glycosylated PC is initiated in the oral cavity , after contact with the glycosidase enzymes of oral

microflora, as demonstrated by Kamonpatana et al.  for anthocyanidins. However, most PCs continue intact

along the digestive tract . On arrival in the stomach and inside the small intestine mucosa, the glycosides are

converted by a hydroxylation reaction into their corresponding aglycones (phase I drug metabolism) (step 2, Figure

2). This reaction is assisted by β-glucosidase enzymes expressed by the intestinal microbiota. In this way,

aglycones may pass from the gut lumen to the cytosol of the enterocytes, predominantly by passive diffusion (step

3,  Figure 2), or by protein carriers, such as P-glycoprotein (P-gp) and co-transporters for sodium-glucose

transporter (SGLT1) . Some hydroxycinnamic acids, such as ellagitannins, are resistant to enzymatic

digestion in the small intestine and, therefore, pass directly to the colon, where they are metabolized by microbiota

into aglycones . Once the aglycones have been absorbed into the enterocytes or colon cells, they move through

the portal vein (step 4,  Figure 2) to the liver, where they are further conjugated (phase II drug metabolism) to

become O-glucuronides and O-sulphates (step 5, Figure 2). A variable portion of the phenolic conjugates is then

excreted into the bile and re-enters the small intestine to undergo the metabolic cycle once again . Finally,

the resultant phenolic conjugates (O-glucoronides/O-sulphates) are transported to the bloodstream by plasma

proteins until they are excreted in urine .

Figure 2. Principle metabolic steps of dietary phenolic compound (PC) in humans.
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2.2. PC Metabolites Have Different Biological Activities

Biotransformation, during the metabolic processes in humans, is determined by the structural characteristics of the

specific phenolic compound . This is because the chemical structure of the compound is specific in promoting the

action of only selected intestinal enzymes and gut microbiota species. It has been shown that gut microbiota are

involved in the release of phenolic aglycones and hepatic O-glucuronides . According to the different

structural subfamilies, PCs undergo intestinal bio-transformations by specific microbiota families 

. Furthermore, it was observed that each single phenolic compound metabolized generates numerous

metabolite byproducts, usually two or three, but also many more, i.e., glycosylated quercetin produces up to 20

metabolites. According to Del Rio , all these modifications during absorption have a profound influence on the

biological activity of the resultant phenolic metabolites, as these may play an active role within different pathways in

the human body. An example is the activation of the transcription factor nuclear factor (erythroid-derived 2)-like 2

(Nrf-2) . It was shown that protocatechuic acid, a metabolite from anthocyanins, is a known Nrf2 activator .

Likewise, caffeic acid metabolites have Nrf2 activating properties . In addition, another protective function

pathway was found to be influenced by phenolic metabolites; it was shown that methylated scutellare presents an

inhibitory effect on H O -induced cytotoxicity in PC12 cells, thus indicating protective activity . In order to be able

to perform all the metabolic reactions, it is necessary that PC, as well as all xenobiotics, administered orally, enter

the intestinal epithelium to reach the blood and lymphatic circulation . The transcellular mechanisms required to

permit the entry of these compounds into the intestinal mucosa are as follows: passive diffusion, carrier-mediated

active facilitated transport, and paracellular transit in tight junctions . Nevertheless, generally, the majority of

drugs enter the cells by passive diffusion . PCs, characterized by low molecular weights, and that are sufficiently

hydrophobic and non-charged, are permitted to be transported by passive diffusion . This involves the

production of biliary salts and the formation of micelles, which permeate through the translocation of the apical

membrane of the enterocytes . Some PCs, such as hydroxytyrosol, tyrosol, p-cumaric acid, apigenin, and

luteolin, are selectively combined in micelles and absorbed differently . In addition, in an in vitro study using

Caco-2 cells to test the permeability of six dietary polyphenols (caffeic acid, chrysine, gallic acid, quercetin,

resveratrol, and rutin), it was shown that several chemical-physical features are related to the passive diffusion

transport capability of molecules through cells. These factors include the lipophilicity (expressed as partition

coefficient logarithm, LogP), molecular weight, ionization state the number of rotatable bonds (RB), and number of

hydrogen-bonding acceptor/donor (HBA/HBD), respectively . Moreover, it was observed that the scarcely

lipophilic ferulic acid (FA) passes through transcellular transport, by tight junction . Regarding structurally

complex PCs, such as gallotannins and ellagitannins, hydrolysis processes permit conversion into smaller

molecules, thereby facilitating assimilation in simpler forms by enterocytes. However, this conversion reaction

cannot occur in the small intestine, so they pass directly into the large intestine where they are fermented by the

microbiota and then can be absorbed by passive diffusion at the level of the colon . All these transport

mechanisms influence the bioavailability of these compounds in humans .

3. Polyphenol Bioavailability
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Bioavailability is a term used in pharmacokinetic language to indicate the fraction of the drug that reaches the

systemic circulation without any chemical modification. Recently, it has also been used for food nutrients.

According to the current accepted definition, bioavailability is the proportion of the nutrient that is digested,

absorbed, and metabolized through normal pathways .

Each class of PC has its own unique chemical structure that results in specific solubility and lipophilicity, which in

turn affects the bioavailability. These parameters influence both the rate and degree of absorption of phenolic

metabolites in the human body during metabolism, before being incorporated into plasma circulation . In the

studies of Marrugat , Fito , and Tian , the bioavailability of various PC was analyzed by detecting plasma

and urine concentrations after the ingestion of pure compounds or food with a known phenolic content. It was

found that phenolic concentrations in either plasma or urine were not directly related to the respective

concentrations in target tissues, but were instead dependent on their metabolic form. This is explained by the fact

that PC, although ingested in a glycosylated form, undergo metabolic processes, such as hydrolysis/hydroxylation

by the intestinal enzymes and subsequent conjugation with either glucuronic or sulfonic acid in the liver. This leads

to a change in their chemical structure, thereby modifying the respective lipophilicity and solubility characteristics,

permitting entry into the blood circulation. Therefore, PCs are found in the blood circulation in conjugated forms. To

confirm this, quercetin and daidzein aglycones were not found in either plasma or urine after they are ingested, but

in their conjugated form (after phase II metabolism) . Resveratrol represents an exception, as it undergoes

glycosylation in order to protect the compound from oxidative degradation. Hence, the glycosylate resveratrol is

chemically more stable and soluble, and consequently more easily absorbed in the human gastrointestinal tract .

Finally, it was shown that large size conjugated metabolites are eliminated in bile, while small conjugates, such as

monosulphates, are preferably excreted in urine .

In this perspective, BCS classification may allow prediction of health effects for PC contained in foods and thus are

administered mostly orally. In 2000, the Food and Drug Administration (FDA) purposed the BCS system as an

approach to avoid in vivo tests when drugs are also characterized by rapid dissolution . More in particular, it was

highlighted that high permeability of a drug does not limit the absorption of a compound during its transit in the

intestinal system. In addition, high solubility of a drug will not limit its dissolution and consequently neither its

absorption, thus the gastric emptying process is the only limiting step for the absorption of a highly soluble and

highly permeable compound . However, some studies have shown that the FDA’s BCS guidance, despite

supporting studies on bioavailability through in vitro test such as on Caco-2 , may not always be enough to

correctly predict the extent of drug absorption in humans .

To study the bioavailability of an active compound, the most reliable measure is the area under the plasma drug

concentration curve versus time (AUC). AUC is directly proportional to the total amount of unchanged drug that

reaches systemic circulation. Plasma drug concentration increases with the extent of absorption, and the maximum

plasma concentration is reached when the drug elimination rate equals the absorption rate. The time peak, which is

reached when maximum plasma drug concentration occurs, is the most widely used general index of absorption

rate; the slower the absorption, the later the peak time. To determine significant AUC values, a cutoff of 80% was

defined . For dietary supplements, herbs, and other nutrients, such as PC, in which the administration is nearly
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always oral, bioavailability can be identified as the quantity or fraction of the ingested dose that is absorbed .

Hence, in this review, the maximum plasma concentration and time peak of the PC examined will be taken into

consideration for the evaluation of their bioavailability.

3.1. Hydroxycinnamic Acids

In the early study of Lempereur , it was seen that the source of hydroxicinnamic acids in foods is relatively

varied. For instance, FA is the most abundant phenolic acid found in cereal grains and represents up to 90% of the

total polyphenol content. In the study of Zhao , it was shown that FA has a very high bioavailability in rats .

It was observed that FA, after undergoing absorption by intestinal epithelial cells and conjugation reactions , was

present in both plasma and urine mainly in its conjugated form . In several clinical studies carried out on rats, FA

administrated at 8 μmol kg   , and between 6 and 15 mg kg   , displays high plasma concentration

between 8174.55 ng L  and 0.444 mg L . Higher results were detected with a higher dosage (20 mg kg ) ,

with a peak plasma concentration of around 12 mg L , whereas it seems that even higher doses (0.5 and 1.5 g 

kg ) lead to a maximum plasma concentration of around 12 ng mL , showing a limiting rate of absorption.

Furthermore, FA time peak was observed at less than 1 h, which implied that it is rapidly absorbed in rat plasma

after oral administration .

Caffeic acid is the most representative hydroxycinnamic acid present in nature, and can be found in food (mostly

fruits) as well as in its ester form, as chlorogenic acid . Clinical studies observed that chlorogenic acid is rapidly

absorbed and metabolized by the intestine, thus the digestion metabolites may be detected in plasma between the

first 5 min and 1 h after ingestion in rats . The current literature showed that chlorogenic acid absorption is

dependent on administered doses, i.e., a low administered dose (1–100 mg kg )  leads to a concentration

between 0.55 and 91 ng mL   of caffeic acid in plasma concentration; likewise, higher doses (400 mg

kg  from Lonicerae Japonicae Flos extracts) , for which peak plasma concentration was registered at around

1500 mg mL , show an absorption rate dependent on the ingested dose. Regarding urinary excretion, the

concentration of chlorogenic acid found after 24 h from ingestion was around 30–34%, indicating that this

compound is rapidly eliminated as well as it is rapidly absorbed .

3.2. Flavonols

The most studied flavonols are rutin and quercetin, and they are mostly found in buckwheat, asparagus, and citrus

fruits, but also in peaches, apples, and green tea . In pharmacokinetics studies carried out on rats and human

volunteers , low bioavailability of rutin was shown, due to its hydrophilic nature, thus suggesting that

it cannot diffuse easily through cell plasma membranes. To be absorbable, rutin needs to undergo to hydroxylation

into quercetin. In fact, after oral administration of rutin (328 μmol kg ), only quercetin sulfates and glucuronides

were detected in serum, with a concentration of 2 and 5 nmol mL   . This evidence was in line with previously

observations, where, after oral rutin administration (500 mg), the absorption rate was 40–200 ng mL  of quercetin

 and showing the metabolism changes that occur on this compound, which are necessary to absorb it within the

human body.
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Quercetin bioavailability was found to be very poor, as it is rapidly metabolized in the human body; therefore, in the

conjugated form (quercetin metabolite), its beneficial capacities are limited compared with the aglycon form .

Furthermore, the total quercetin conjugates measured in plasma concentrations after oral ingestion are very low. In

the study of Dong , rats showed rapid absorption of quercetin (8.51 mg kg ) from  Matricaria chamomilla

L. extract, with a final plasma concentration around 0.29 µg mL  detected after 0.79 h (47 min) from ingestion,

confirming that it is rapidly absorbed after oral administration. In Graefe study , human volunteers who ingested

100 mg of quercetin glycosides showed a maximum plasma concentration at 2.12 µg mL  and urine concentration

at 4.5%. This evidence confirmed the rapid absorption of quercetin aglycone, which is supposed to occur in the

upper part of the intestine, thus involving active absorption mechanisms. Kaşıkcı  demonstrated that absolute

bioavailability (2.01 μM) of quercetin was attained after ingesting the compound suspended in aqueous solution.

3.3. Flavones

Regarding flavones, celery, red peppers, chamomile, mint, parsley, rosemary, oregano, traditional Chinese herbs,

and ginkgo biloba are the major sources of this subclass . It was shown that apigenin administered at both low

doses (13.82 mg kg )  and high doses (60 mg kg  and 100 mg kg ) , is similarly absorbed, with max

plasma concentration registered between 0.14 and 1.33 μg mL . Moreover, in the study carried out on six men,

the apigenin conjugates detected in urine after 24 h from the administration lead to an excretion rate around

0.22%, suggesting that most of the apigenin ingested is rapidly metabolized or is excreted unabsorbed, thus

showing high permeability of this PC within the human body .

Following the flavones subclass, cirsimaritin, mostly found in rosemary and oregano, was also investigated. In a

pharmacokinetic study on rats , 8 mg kg  of cirsimarin (glycosyde form) was administered from crude extract

of Microtea debilis and, 5 h after ingestion, the low permeability of this PC was demonstrated: the determination of

plasma concentrations of cirsimaritin aglycone was 0.138 µM and the urine concentrations after 5 h from oral

administration were only 5.05 µM (3–5%). These results showed that cirsimarin is not absorbed from the

gastrointestinal tract, but in the stomach, and then it must be converted to cirsimaritin to produce systemic healthy

effects within the human body.

3.4. Isoflavones

Isoflavones are present almost exclusively in leguminous plants, particularly daidzein, which is found in large

quantities in soybeans and soymilk . Based on the several studies carried out on rats or human volunteers,

daidzein showed low bioavailability. In fact, in experiments with both low concentration (from 0.4 to 1 mg kg ) 

 and high concentration of oral administered daidzein (from 30 to 50 mg kg  and 418 μmol L ) ,

the serum peak registered (173.1 ng mL  and from 0.38 to 2.5 μmol L ) appeared within 2 or 8 h from ingestion

, highlighting its rapid absorption from the gastrointestinal tract, and indicating the low bioavailability of this

compound.

3.5. Stilbenes
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Despite the low quantities of stilbenes in the human diet, resveratrol is both the most representative polyphenol

and the widely studied, as it is considered the main one responsible for health benefits . More in

particular, it was indicated by numerous recent studies that resveratrol presents several benefits to human health,

such as antibacterial, antioxidant, anti-inflammatory, and anticancer activities . Resveratrol has been

detected in numerous plants, particularly in red grapes, and thus is highly concentrated in red wine and grape juice

. Regarding bioavailability of this compound, after oral administration, resveratrol is absorbed by passive

diffusion or by membrane transporters within the intestine, where it undergoes metabolic reactions, and then the

resulting metabolite is released in the bloodstream, where it can be detected . It was demonstrated from

several clinical studies that, after oral dose of resveratrol between 25 and 150 mg , the max

plasma concentration registered ranges between 491 ng mL   and 471 μg L . Moreover, lower doses of

resveratrol were studied (0.5 and 1 mg)  and a low plasma concentration of the glucuronidated form at 130.19

ng mL  was registered, whereas for higher doses (from 500 mg to 5 g) , the plasma concentration

detected was between 0.5 μg mL  and 4 μg mL . These several studies demonstrated that the absorption rate is

dependent on the orally administered dose of resveratrol. Urinary excretion of this PC and its metabolites was

rapid, with 77% of all urinary agent-derived species excreted within 4 h after the lowest dose . As previously

explained, when resveratrol is taken orally, it is metabolized to its glycosylated form, which increases its stability

and solubility, allowing this compound to be more easily absorbed . Hence, it was concluded that the systemic

bioavailability of resveratrol is high, showing high permeability within the human body, thus accumulation of

potentially active resveratrol metabolites may produce healthy effects within the human body .

3.6. Tannins

Ellagic acid is a natural phenolic antioxidant found in many fruits and vegetables, such as walnuts, pecans,

cranberries, raspberries, strawberries, grapes, peaches, and pomegranates. Clinical studies carried out on this

compound showed its low bioavailability. More in particular, both low oral administration (20–25 mg)  and

high oral administration (85.3 mg kg  and >500 mg)  showed a plasma concentration in human patients

between 30 and 200 ng mL . An exception can be made for the 40 mg dose, which can be considered halfway

between a low and high administered dose. The serum peak concentration was registered around 200 ng mL ,

which was similar to the serum peak concentration obtained from a high dose of ellagic acid (>500 mg). These

results showed that the absorption system of ellagic acid becomes saturated above a certain dosage of this PC

and, therefore, the maximum detectable plasmatic concentration seems to reach its plateau, which appears to be

around 200 ng mL  in the case of ellagic acid. Moreover, this peak concentration in the serum was reached after 1

h from the administration, owing to the fact that 50% of total ellagic acid was shown to bind to blood proteins after

intestinal absorption (within the first 30 min after oral administration) .

3.7. Curcuminoids

Among Curcuminoids, curcumin covers relevance in Southeast Asia, as it is abundantly found in turmeric, which is

a spice widely used in Southeastern Asian countries’ culinary traditions . It is relevant to note the highly

lipophilic nature of curcumin (high LogP), attributable to the methine-rich segments that connect the polar regions
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; this is also reflected in its capacity to interact with biomembranes . However, its therapeutic potential is

still debated owing to its poor bioavailability in humans. Curcumin has been shown to have low permeability and to

be poorly absorbed from the small intestine, whereas conjugative metabolism in the liver is extensive . The low

availability is also caused by the binding of curcumin to enterocyte proteins, altering its chemical structure . It

was seen that curcumin is ineffectively transported through the intestinal mucosa into circulation ; this molecule

can undergo biotransformation within the intestinal mucosa or directly in the bloodstream .

Pharmacokinetic studies demonstrated that a high dosage of this compound, between 8 and 12 g daily 

, displayed a low plasma concentration, ranging between 50 ng mL    and 2 μg mL   , and

similar with low dosages (from 100 mg to 4 g daily) , with peak plasma

concentrations registered around 0.51 nM , 15.8 nmol L   , and 12.2 and 96 ng mL   . In

both studies of Mahale  and Dhillon , the maximum plasma concentration was detected 2 h after ingestion

of curcumin and urinary levels collected after 24 h were 210 and 510 nmol L   of curcumin glucuronides ,

showing that its metabolites have a short time period within the human body, meaning curcumin is not expected to

be able to exert its beneficial health effects.
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