Optimization of Dynamic Shading Structures | Encyclopedia.pub

Optimization of Dynamic Shading Structures

Subjects: Construction & Building Technology

Contributor: Doris Chi , Edwin Gonzalez

This work implements parametric tools to optimize the environmental design of urban adaptive shadings through
multiobjective evolutionary algorithms that look for solutions of dynamic (time-changing) structures used in open
public spaces. The proposal is located in Malecon Cancun Tajamar in the southeast part of Mexico, and the main
objective is to enhance the thermal comfort of users as well as to become part of the social dynamics of the place
reinforcing identity through appropriation. The proposed workflow includes four steps: (1) geometric modelling by
parametric modelling tools; (2) simulation of environmental parameters by using BPS tools; (3) shape optimization
by using an evolutionary algorithm; and (4) environmental verification of the results. The Universal Thermal Climate
Index (UTCI) was used to assess the outdoor thermal comfort derived from the dynamic shadings. The results
showed a significant improvement in the thermal comfort with absolute UTCI differences of 3.9, 7.4, and 3.1 °C at
8, 12, and 16 h, respectively, during the summer; and absolute differences of 1.4, 3.5, and 2 °C at 8, 12, and 16 h,
respectively, during the winter. The proposed workflow can help to guide the early design process of dynamic

shadings by finding optimal solutions that enhance outdoor thermal comfort.

Universal Thermal Climate Index outdoor climate evolutionary parametric optimization

shadings design urban environmental performance modelling

| 1. Introduction

Urban livability refers to the quality of life and wellbeing of residents in cities L. The concept includes the impact of
environmental and climatic factors such as air temperature, air, and water quality, wind speed, relative humidity,
solar radiation, and qualitative indicators of quality of life, pleasure, and joy 28l Among these, the consideration of
thermal comfort has been a focus of interest as urban climate affects all aspects of the city including building
interiors, city architecture, and open spaces . Hence, it has been seen that thermal comfort of urban open spaces
promotes social life, interrelations of residents, and economic activities; or contrarily, enhances isolation and social

exclusion 4,

Urban livability is also concerned with the aesthetics and physical characteristics of buildings, streets, and
development blocks: “Creating pedestrian-friendly enclosures and neighborhoods where residents can
conveniently walk from home to school, and parks are central to the vision of livable cities of new urbanists &.” In
addition to this, all the elements that configure the urban public space should contribute to the appropriation of its
users; the public space is not only the place of encounter, but also the place where citizenship is built and identity

is reinforced (€. Essentially, this means that when considering the quality of public space, it must be taken into
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consideration that there are also intangible factors that are key to the success of the intervention in the urban

environment.

It is therefore important to create comfortable thermal environments in urban open spaces that promote an
intensive use of places boosting its role not only as leisure or resting facilities but also as part of the population’s
daily experience. Designers and planners require guides with a comprehensive understanding of outdoor thermal
comfort to improve the living conditions of cities. It is important that these elements also take into account its

symbolic possibilities.

Shadings are an important factor in urban outdoors since they can block direct solar radiation and affect thermal
environments and long-term thermal comfort. The role of shadings on outdoor thermal comfort has been examined
in several studies under different climatic conditions [EIRILAILLLZ Most of these studies have been conducted in
temperate and cold climates, and some of them were conducted in subtropical humid climates. Their findings have
provided valuable information on understanding the effects of outdoor climatic conditions on people’'s thermal

sensation as well as the use of outdoor spaces.

In 131 researchers discussed the shading effect on long-term outdoor thermal comfort in a hot and humid climate,
finding that different shading levels contribute to variation in the thermal perception distribution. They also found
that the frequencies of hot discomfort at the shaded locations were significantly lower than that of barely shaded
spaces. In the end, the authors recommended multiple shading types and different shading levels for outdoor

space design to allow users to choose their preferred thermal comfort condition.

In 24l researchers conducted an investigation in hot and humid regions, reiterating the importance of shade in
outdoor environments and discussing the thermal requirements based on characteristics of local residents. They
found that few people visit squares when the thermal index is high, whereas the largest number of people visiting
the outdoors is when the thermal condition is close to their thermal comfort range. An interesting finding derived
from this study was that solar radiation and the level of shading play more important roles than the air temperature

and wind speed in outdoor spaces.

Similarly, thermal comfort in outdoor urban spaces was studied in 2], finding that the sun sensation/solar radiation
has the most significant influence on human thermal sensation in outdoor spaces in tropical climates. According to
(28] the most important parameters that determine the use of public space are air temperature and solar radiation,
with differences depending on the time of day. Other authors 24 also pointed out the importance of the shade,
together with the geometry, shape, and density of urban morphology to understand the climatic conditions and

thermal comfort.

In (281 the authors examined the seasonal effects on urban street shading and long-term outdoor thermal comfort in
subtropical climates. The results suggested that a certain shading level is best for urban streets; thus, some

shading devices may be added in the summer and removed in the winter. Correlation analysis revealed that
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thermal comfort is best when a location is shaded in the spring, summer, and autumn; in the winter, thermal

comfort is best when a location has little shade.

In 22 & bus stop shade was designed for three different climates that ranged from hot to cold. The aim was to
minimize the amount of shade material and to allow occupants to be comfortable. A new method named
ComfortCover was proposed, consisting of three main steps. First, the method assessed the radiation falling on a
person in order to calculate the solar-adjusted radiant temperature. Then, calculations of the Universal Thermal
Climate Index (UTCI) were run to identify ranges of thermal stress. Lastly, sun projections from the location of a
person through the shade were considered. In the end, the method demonstrated to be suitable for most design

applications and flexible within the visual programming of Grasshopper through Ladybug tools.

Based on the above review, it can be seen that most of the outdoor thermal comfort studies have been traditionally
developed in temperate cities 2%, but research in tropical or equatorial zones has been increasing 2. As much
urbanization occurs in these low-latitude areas, these settlements are also enhancing their development and
management of urban spaces [22. Therefore, it is worth carrying out a study to evaluate the outdoor thermal
environment conditions and human thermal comfort in a tropical climate of Mexico. This particular climatic and
geographical region was selected in this work as the first approach to assess the shading effect on outdoor thermal

comfort.

From the literature review, it was also observed that many researchers have tested the role of shadings in outdoor
environments as an important strategy to improve pedestrian comfort. Conclusions from these investigations
indicated the advantages of using ‘different shading levels’ for outdoor spaces allow users to choose their preferred
thermal condition. However, these conclusions were projections based on their findings, but neither dynamic nor
movable structures were explored. Instead, different types of fixed shading devices were analyzed at
representative times over the year. Therefore, it is also worth assessing the environmental and adaptive design of
urban shadings through parametric modelling tools that are nowadays integrated into the architectural design
process—for example, the use of movable devices that change their design parameters (e.g., rotational and folding

angles) according to seasonal variation and times of day.

Today, that research gap can be fulfilled with the advantage of computational tools: (1) The outdoor thermal
comfort can be studied through ‘Building Performance Simulation (BPS)’ tools that allow detailed analysis for
environmentally conscious architectural designs. (2) The dynamic design (many different solutions) can be
systematically tested through the variation of several design parameters by using ‘Parametric Design’. The general
idea behind Parametric Design is to use mathematical algorithms to optimize certain design goals against a set of
design constraints. (3) The optimization design can be accomplished with the use of ‘Evolutionary Algorithms’ 23],
Among these algorithms, the ‘multiobjective optimization’ has the advantage of running detailed analytic tools

coupled with comprehensive selection methods, within the Grasshopper interface.

A large and growing body of literature has investigated the performance of shadings with BPS software. Moreover,

a growing body of literature deals with Parametric Design—although most of these studies are not focused on
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buildings’ environmental performance but on the design of complex geometries and structures 24, Commonly,
findings from these two types of analyses are generalizable and applicable to the projects. It is, however, a
relatively small body of literature that is concerned with evolutionary algorithms (they are relatively new). These
algorithms are mainly used in industry and in areas such as engineering electrical electronics, computer science

artificial intelligence, and automation control systems [23],

| 2. Analysis on the Results

2.1. Fitness Values and Optimization Results

Table 1 and Table 2 enlist the optimal genomes for the summer and winter, respectively. As previously explained,
the best solutions were ranked according to the fitness values and the process was repeated for each specific date
and time. Table 1 and Table 2 also include the simulated results for the shaded area and the UTCI averaged over
the unshaded evaluation area (144 m2) to allow for the comparison between the outdoor thermal conditions with
and without the shadings. To better interpret the distribution of the thermal conditions over the entire evaluation
area (144 m?), the latter was subdivided into five smaller areas that achieved a specific stress category of UTCI
(°C):

Table 1. Data of phenotypes of 21 June.

Population Fitness Values UTCI (Stress Category)
Shaded Area
Average . Strong
Day & . Shaded UTCI(°C)—  No Slight  Moderate =,
GenerationGenoma 2 Heat Heat Stress
Hour area (m“) Unshaded Thermal Stress (m2) Stress
Area  Stress (m?) (m?)

(m?) urci(c) |,

TCI (°C)

49 0 18.02 37.0 0 0 10.7 7.4

49 1 17.94 37.0 0 0 10.8 7.4

49 2 18.18 37.0 0 0 10.4 7.8

49 3 18 37.0 0 0 10.7 7.3
21

10.9 7.0

June 49 4 17.9 37.0 0 0 30.6 37.0
8h

49 5 17.94 37.0 0 0 10.8 7.1

49 6 18.1 37.0 0 0 10.5 7.6

47 2 18.18 37.0 0 0 10.4 7.8

48 4 17.9 37.0 0 0 10.9 7.0
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Population Fitness Values UTCI (Stress Category)
Shaded Area
Average . Strong
Slight  Moderate
Day & . Shaded UTCI (°C)— No Heat
Hour GeneratlonGenomaarea (m?) Unshaded Thermal el Sﬁress Stress
2, Stress (m*) >
Area  Stress (m“) (m2) UTCI (°C) (m*)
UTCI (°C)
7.8 1.4
49 0 9.13 415 0 0 30,2 292
49 1 9.34 415 0 0 7.5 1.4
49 2 9.26 415 0 0 7.8 1.3
49 3 9.28 415 0 0 7.8 1.3
49 4 9.22 415 0 0 7.8 1.3
21
49 5 9.31 415 0 0 7.5 1.5
June
12h 49 6 9.3 41.5 0 0 7.6 15
49 7 9.23 415 0 0 7.8 1.4
49 8 9.28 415 0 0 7.8 1.3
49 9 9.31 415 0 0 7.5 1.5
47 1 9.34 41.5 0 0 7.5 1.4
48 1 9.13 415 0 0 7.8 1.4
21 14.6 5.3
June 49 0 19.92 34.9 0 0 26.7 32.0
16 h
49 1 20.21 34.9 0 0 14.9 5.3
49 2 20.05 34.9 0 0 14.7 5.4
49 3 20.06 34.9 0 0 14.7 5.4
49 4 20.18 34.9 0 0 14.8 5.4
49 5 20.18 34.9 0 0 14.8 5.4
49 6 20.21 34.9 0 0 14.9 5.3
49 7 20.21 34.9 0 0 14.9 5.3
49 8 20.02 34.9 0 0 14.7 5.4
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Population Fitness Values UTCI (Stress Category)
Shaded Area
Slight
Shaded U.?éf;?g;a_ Thglrcr)nal Heat Moderate Strong
Day & HourGenerationGenoma Area Stress Heat Stress Heat
> Unshaded Stress > 2
(m9) Area (m2) (m*) (m*) Strezss
o]
m
uTCI (°C) UJ'CI UTCI (°C) (m*°)
(°C)
49 0 25.37 28.1 15.3 10.1 0 0
15.3 10.1
49 1 25.37 28.1 e s 0 0
49 2 25.31 28.1 15.4 9.9 0 o dedarea
49 3 24.56 28.1 16.2 8.4 0 0
o 49 4 25.19 28.1 15.6 9.6 0 0
Decgrber 49 5 24.76 28.1 15.9 8.9 0 0
49 6 25.32 28.1 15.5 9.8 0 0
49 7 25.31 28.1 15.4 9.9 0 0
49 8 25.37 28.1 15.3 10.1 0 0
46 6 25.37 28.1 15.31 10.1 0 0
47 8 24.56 28.1 16.2 8.4 0 0
10.4 5.2
49 0 15.63 33.6 0 26.7 30.0 0
o 49 1 15.69 33.6 0 10.2 515 0
December 49 2 15.64 336 0 10.4 5.2 0
12 h
47 4 15.63 33.6 0 10.4 5.2 0
48 1 15.69 33.6 0 10.2 55 0
21 49 0 27.87 27.0 22.4 5.4 0 0
December
16 h 49 1 27.82 27.0 22.5 5.4 0 0
22.4 5.4
49 2 27.79 27.0 248 26.0 0 0
49 3 27.79 27.0 22.5 5.3 0 0
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Population Fitness Values UTCI (Stress Category)
Shaded Area
Slight
Shaded ATAELS — Heat Moderate Strong

UTCI (°C)— Thermal

Day & HourGenerationGenoma Area Stress Heat Stress Heat
> Unshaded Stress > 2
(m%) Area (m2) (m*) (m?) Strezss
o]
m
UTCI (°C) urcl  uTc (cc)y (m?
(°C)

49 4 27.84 27.0 22.5 5.4 0 0

49 5 27.8 27.0 22.5 5.3 0 0

49 6 27.76 27.0 22.4 5.4 0 0

49 7 27.87 27.0 22.4 5.4 0 0

49 8 27.8 27.0 22.4 5.4 0 0
45 0 27.73 27.0 22.4 5.4 0 0 1e time of
48 0 27.87 27.0 22.4 5.4 0 o crate heat
2at stress

49 0 25.37 28.1 22.5 5.3 0 0
at stress

49 1 25.37 28.1 22.5 5.4 0 0

49 2 25.31 28.1 22.5 5.3 0 0
rCl stress
49 3 24.56 28.1 22.4 54 0 0 r thermal
conaions: U 49 4 25.19 28.1 22.4 5.4 0 o 10 better

understand the resuis, sutiic pricnulypes weie mynnyieu i yray stiauiny i 1awic 1 anu rawice < w cacmplify the
UTCI improvements. In the summer at 8 h, the unshaded area achieved an UTCI of 37 °C, whereas the shaded
area 30.6 °C: an absolute difference of 6.4 °C. In the summer, the maximum difference was 11.3 °C at midday and
Bl@tés. &dibehphetiwypedar¢heghligmeondiffeareyssivedind. 4o ex8sraptf té@aid, idhrandreérisresshetdedyarea

vs. shaded area. Their UTCI degrees are marked in bold and italic numbers inside the shaded areas.
Figure 1 groups visualizations of the phenotypes listed on Table 1 and Table 2. From a plan view, Figure 1 allows

an overall comparison among the different shading positions at different times. For a close-up visualization of the
different phenotypes, see Appendix A. From the phenotypes, the time-changing positions of the dynamic shadings
can be easily observed. To better visualize the variability throughout the day and seasons, some specific
phenotypes are selected and presented in Figure 2. Thus, the changes in the folding and rotational angles can be
noticed. During the summer, the shading looks inclined during mornings, but almost vertically aligned at middays,
and almost horizontally positioned during the afternoon. During the winter, the folding angles are similar to those

displayed in the summer, but the rotational angles are different.

https://encyclopedia.pub/entry/11925 7/21



Optimization of Dynamic Shading Structures | Encyclopedia.pub

June 21st
UTCl
'y e
LT
3
B
h 1352
8 343
1! 1
31.1
-]
Murmber of exported solutions: 9 out of 500
I.JTC]
a3
i2h u - ' -
3! ]
I 3.7
- n n n -
Musritser of exported solutions: 12 eut of 500
UTCI
b=
e
351
3
= EiN
16h

ey
LIE]
i

n ldni

Mumber of exported salutiens: 11 out of 500

December 21st
UTCI
M M :
Fe i
ll‘ﬂ-i
Fif
NN
256
!5#
MMM

Mumiber of exported sofutions: 11 out of 500

A

Mumber of expartedd olutiong: 11 out of 500

Figure 1. Pareto Front phenotypes: Solutions ranked as the best according to the two fitness objectives. For a

close-up visualization of the different phenotypes and inputs

, see Appendix A.
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June 215t December 21st

16h

Figure 2. Comparison among the phenotypes during specific times.
2.2. Verification of Results

In order to assess the environmental verification of the results, specific phenotypes were selected from the Pareto
Front solutions (Figure 3). The selected phenotypes are listed in Table 3; they were modelled with the genes’
information taken from the Pareto Front. On average, the fitness optimization results showed a good agreement
with the replicated shading results. This finding was significant for both the UTCI degrees and the shaded areas.
From Table 3, it is observed that shadings affected the average outdoor thermal comfort significantly, particularly
during the summer. For example, UTCI achieved 41.5 °C with no shadings but 34.1 °C with shadings, at midday.
The absolute differences during the summer were 3.9, 7.4, and 3.1 °C at 8, 12, and 16 h, respectively. The
absolute differences during the winter were 1.4, 3.5, and 2 °C at 8, 12, and 16 h, respectively. From here, it is
confirmed that shadings contribute to enhancing the outdoor thermal comfort, which in turn influences the
perception and satisfaction of the pedestrians. Thus, it is expected that the presence of the shadings in the open
urban space also contributes to the overall outdoor thermal comfort due to the decreases in emitting the longwave

radiation from the ground.
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Figure 3. Second exercise with a population of 500 genomes. UTCI optimization graphs for 21 June: (a) 8 h, (b) 12
h, and (c) 16 h.

Table 3. Selected phenotypes.

Population Fitness Values
- Shadows Average UTCI (°C)— Average UTCI (°C)—
Day/Hour GenerationGenoma (mz) Shaded Area Unshaded Area
21 June 8 h 49 4 17.9 33.1 37.0
21 June 12 h 49 0 9.13 34.1 41.5
21 June 16 h 49 0 19.92 31.8 34.9
21 chﬁmber 49 1 25.37 26.7 28.1
R eSS 49 0 15.63 30.1 33.6
12 h
21 December 49 2 27.79 25.0 27.0

16 h

Concerning the environmental results, a specific shading configuration was included in Figure 4. Thus, the

simulated results for 21 June, at 16 h, are revealed as an example of a selected phenotype performance.
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Figure 4. Example of the results obtained from a selected phenotype (Generation 49, Genoma 0): (a) UTCI (°C) in
21 June at 16 h, and (b) shaded area (m?), in 21 June at 16 h.

Furthermore, the yearly condition of a person under the shadings vs. under the exposed sunlit area (with no
shadings) is compared. As a result, a significant improvement of the pedestrians’ thermal comfort is revealed.
Figure 5b indicates a predominant stress category of extreme heat throughout the year when no shadings are
placed on the site. This thermal condition is dangerous since it has been recognized as a potential public health
hazard with higher-than-normal mortality rates. As observed from the temporal map, this problem would be
present, even during the night hours. A possible explanation for this might be that the heat absorbed by the

concrete pavement throughout the day is released to compensate for the drop in temperature.

(a) Condition of Person
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Figure 5. Comparative of the condition of a person throughout the year: (a) Shaded conditions vs. (b) unshaded

conditions. Hourly data from the EPW file of Cancun, Mexico.

Nevertheless, when the dynamic shadings are working in place, the dominant stress categories varying from
comfortable to warm and hot throughout the year, as Figure 5a depicts. According to these categories, the
sensation is comfortable or warm but comfortable for short periods; moreover, no public health hazard is
recognized. Here, it is important to note that these stress categories coincide with the UTCI degrees considered

acceptable for this study context (please refer to Section 3.2).

| 3. Discussion

This study has been successful as it was able to identify specific shadings positions (folding and rotational angles)
for specific times during the year that allow enhancing the outdoor experience of pedestrians in terms of thermal
comfort. Hence, the dynamic shadings responded to specific environmental conditions and contributed to reducing
the thermal stress and to increasing the shaded areas. To develop a full picture of the adaptive shadings and
environmental performance, additional optimizations during the hottest day of each month will be addressed in a

continuation of this work.

Furthermore, it is expected that such dynamic shadings can contribute to the urban livability of the studied urban
open space. This is an important issue for future research that should be undertaken to investigate how
pedestrians interact with a prototype placed on site. Fabrication and assembly are now possible by using other
digital electronic prototyping add-ons in Grasshopper, such as Firefly that works in conjunction with Arduino IDE

and digital fabrication platforms such as RhinoCAM.

Regarding the time changing of the shadings, it not only provides more comfortable zones but also can make the
public space more attractive. These structures are meant to have the potentiality to become part of the public art
network of the place. This would add a sense of identity for the place and the users. In this respect, the exploration
of the disposition of the structures in the public space is an interesting asset in terms of aesthetics and should be

further explored.

In this work, the use of a multiobjective optimization algorithm was very important for identifying the best shading
solutions. Hence, Wallacei X allows storing the results to replicate the genes and the 3D shadings for further
evaluations. However, Wallacei X does not allow establishing specific ranges for the targets. This means that the
function objectives should maximize or minimize a specific single fitness value. This could be considered a
disadvantage when performing evaluations for temperate and cold climates, for which the condition of person could
range from extreme cold to extreme hot. Other multiobjective optimization algorithms such as Octopus or Goldfish
could be tested to find the option that better fits with the study objectives (although these algorithms do not allow

storing the results).
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From the above, the application of the proposed methodology should be further tested in other climates, unlike
from the tropical one. To accomplish that, some adjustments to the fitness objectives should be carried out
according to the climate studied. The final objective will be the same: the environmental adaptability of dynamic
structures in open public spaces. As mentioned in the literature review, dynamic shadings represent a significant

advantage, in comparison with static structures.

Different algorithms could be implemented in further investigations to test if they contribute to reducing the
simulation and optimization times. By replicating the shapes derived from single-objective optimizations and
comparing them with the shapes derived from multiobjective optimizations, UTCI data and shaded areas could also
be compared. The continuous development of new algorithms seems to be quite promising to accomplish this task

in the near future.

| Appendix A

Figure 1 was subdivided into six parts, each containing the replicated phenotypes for the summer and winter
times. Thus, the time-changing positions of the dynamic shadings can be easily observed. This appendix presents
the 6 subfigures grouping the phenotypes by the daytime studied. Figure Al, Figure A2 and Figure A3
correspond to the phenotypes for the summer day at 8, 12, and 16 h, respectively. Figure A4, Figure A5 and
Figure A6 correspond to the phenotypes for the winter day at 8, 12, and 16 h, respectively.

https://encyclopedia.pub/entry/11925 13/21



Optimization of Dynamic Shading Structures | Encyclopedia.pub

" L
80 380«
. a7
31 B
'352 sz
343 B2k
LR 13
.3.2.4 324
I N4 na
£305 E <305
{bsiversal Thermal Cimate Index Univaras Thesmal Climats ki Usirversal Thermad Cimate index
A - Husmber lnpunt 3: 0 . - Mumbar lapet 30 , [y Rmber Inpa 3. 0
Genidd | InddLo s mesrss  Genidd | Ind:5SLRSmts,  Genid9 | Ind:6y e
FV 870 FU.1:-17 04 Hosbar bt 029 P 118 e T s
FVL 2 36 991454 FUZBWIB s FUZIGIN o b0
Hurmiber Inpet 160 Mumber boput 7- 41 G511 NUMDEE NPt 10 parper ngud 7 41 4585
Mustibsst I 2 0 Wb Ingut B: 016805

Mumber input B 1163441 Nuffibid I 2.0
s

C

80 30:
a7 B
351 B
o EOF 552
343 383
333 313
124

3.4
<305

{314
lm .
<35

UniversalThermal Cama lodex " Uniwersal Thermal Climate ndes Usiversal Thermal Climate indax

Gen:49 [ Ind: 10 e, Gend | Ind:2Mmeiedso  Gen:dg | |ng:3pume el

T 3 Mumbser bnpet 4: T 18 i Humber Ingut £: 7.4
Husbae gz FV. 11818 Mumberbpu 55251 Y 11 Husrber g 5 82.56

FY. & 3699136 Hussber Input -0 FULZBOIT e o 2 R

Hurebed Il 10 giympar iopat 7 810451 Mumber input 10 piumier inpot 7. 40,83558 MUMDEE N 10 ampar incun T2 4185775

Numiser Inpet 220 bussber Input B: 0167848 Bumber Input 2210

wqﬁaalmaaﬂmww

wm‘éﬂ.ﬂ.mi’m

EE-E, R0
371 378
| 26,1 £
L] I 352
33 33 54l
{333 {333 33
(324 {324 24
I 34 A IH-"
<55 .3 <05
Univerial Thermal Chmate Index o Uniwarasd Thermal Climats indu Universal Thermal Clmate lsdex
Gen:47 | Ind:2i=>e it ? . Gen:dB | Ind:gMmerivaso  Gan:4Q | nd:(mber o
RV 1 AT 18 Hharnbser Ingu 4: 7. __ Mumber gt 4: 7.55 : Fursber Input £: 7.4
Mamoeringut 9281 FV. 1:-419 Mumber gt 59245 Y 11802 Hursbar lrput 5 926
Py 2 3 00eT R gt i 0 ek R YA FUL MR e b0
Number Input 190 prnber ingut 721 82958 Humbor nput 10 pmbar bt 7 4100767 NUMDSE IOt 10 papr o v a4 910
Murmber Inpt 2: 0 gber nget B: 0168515 Mumber Input 210 umber inpot & 0167615 Number npud 20 buesber input B 0163878

Number of exported solutions: 9 out of 500

Figure Al. Pareto Front phenotypes of 21 June, 8:00 h.

https://encyclopedia.pub/entry/11925

14/21



Optimization of Dynamic Shading Structures | Encyclopedia.pub

T < L
429 428: a5
413 413 413
i w7 E kL
£ {3m 31
k W5 fL] L]
. g T I
ETE] 33 5L
I!u l_n.r Ii-l.?
<350 <41 <01
Usthearil Tharmud Chrate lsdae Uriverral Thaemal Climats Index Ubebfial Thisial Chsists il Utwirisl Tharmal Climits Fedea
Gen:49 | Ind: Emmign Gen#ﬁ“nd?"'m"“‘iia Gen4g | Ing:gpeterast 0 Gen:49|lnd9"‘""°""“"3"-"
e premribiart e LRI T mzm e ALIa vz
PEBNENS  pberrpaf 2 PUZASIHE o oppen FYESIESIN  Lopneepu PVEHSNIE o egenm
Humted A 10 piormber oot T: 1208560 Hmber DUt 10 pmbge bnger 7 171 11N MSTTRRT INEUT 10 e npu 7: 10000000 FUSSDRT 180 10 o iogud T 10T IS
Mumberingul 2: 0 pmier gt B (LP20535 Mumber ingut 2 0 Wb lput B S uG00Y Number Rt 20 Mambergurs e Humber Bpa 20 jumbee et 8 02415
L % s
438 :i.m 429 Al
a3 ag 413 a3
Ij.'n ! 507 1y mnr
oA :n.r "3 LN
65 i385 5 ®5
349 LT ] 3459 pot]
13 g 333 33 EER
l_u_:r l 1.7 nr l nr
<MLl 301 =t 3
Univarsal Thermal Chmate Isden Uniearaal Thenmmal Chmate Indes Uniwersal Tharmal Climass Index Unbvarsat Tharmal Simate nger
Gend9 [Ind2,w'sie,,  Gendd|Ind3yme=roess, Gemdd|Inddpmrrves?,  Gond9|IndShrreas:
e Humberinpat 1z o o8 wmﬁclﬂ i e famter gt 131 P LA Mamizer gl 5 147
PLZNSERT pmevpapm FRRASEERT o rmm P2 41 480008 e LA k) Mamber inpul & 5124
Humbar i 130 surmter gt T 1210840 MUTRerIRUl 1D pper b 7121000 Hmber Rt 10 gy gt T 1 0875 Pumber ngut 10 s oo 7 12085710
Mumbat MpA T jursber ingul & 0247485 MumBed oA 20 mamber input & 0267488 Number Mot 20 pumber lnpel B 0248517 NUmBR iUl 20 pariter input B 0 241528
3.’!-: ::!3-: -*{?-'R fl!f
413 a3 413 413
B ] 7 7
B 351 T " aE A
ms %5 s 5
44 ME M9 349
53 323 13 113
I 1y l e lzu I w7
Uil Tharmal Cimasy lndee 0 Urwereal Tharmal Climae inder - Uniwerial Thermal Climats lsdax g Unrrersal Thermal Glmats ingex =
Genid7 |Ind:ikmi=retse  Gond8 | Ind:1nmioreess  Gondd | InONmsrsss  GendQ | ind:1heoemseso
21:.;34 Rmrhadf i FRIA rurw-wsu:' P 1513 Huerboe gt 5 1 2den i Rambietiegut 5. 143
FASBON iy PERASMBT L emn PREAEISHT by PV.Z LR L
Haurmbar lnpet 1) WMTWMW""““ Worrbe et 7. 171 2000 1HUTDRr bt 10 pmmber inpent T 121 200G MO gt 10 i gt 7: 120 T

Hasber Ispad 7 0 Rumbes Ingel & 021121

Rt Input umber Ingut 2298819 Humber input & 0

Mumber of exported solutions: 12 uut uf 500

Figure A2. Pareto Front phenotypes of 21 June, 12:00 h.
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Figure A3. Pareto Front phenotypes of 21 June, 16:00 h.
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Figure A5. Pareto Front phenotypes of 21 December, 12:00 h.
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Figure A6. Pareto Front phenotypes of 21 December, 16:00 h.
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