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Prostate cancer (PCa) is one of the most common cancers and the second leading cause of cancer-related death among

men worldwide. Despite progresses in early diagnosis and therapeutic strategies, prognosis for patients with advanced

PCa remains poor. Therefore, it is necessary to develop novel strategies to prevent, diagnose and effectively treat PCa

patients in clinic. Noteworthily, a unique feature of healthy prostate is its highest level of zinc content among all soft

tissues in the human body, which dramatically decreases during prostate tumorigenesis. Here, we discuss clinical

applications of zinc-containing compounds and proteins involved in PCa signaling pathways. Based on currently available

studies, we conclude that zinc can serve as a biomarker in PCa diagnosis and therapies.
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1. Introduction

Significantly decreased zinc levels during prostate malignancy implicated its activities in inhibiting proliferation and

metastasis of tumor cells and inducing cell death, which led to the development of zinc or its related compounds in

diagnostic and therapeutic applications of PCa. Due to the controversies and inconsistent results regarding the effects of

zinc supplementation on PCa among different laboratory research and epidemiologic studies , we will

mainly discuss the applications of zinc and its associated proteins as they relate to clinical diagnosis of PCa in this

section. Additionally, we will comment on immunotherapies targeting zinc signaling.

2. Clinical Applications of Zinc Signaling in PCa

In the clinic, currently prevailing tests of PCa diagnosis can be divided into two categories: traditional and modern

methods. The traditional methods include digital rectal examination and blood PSA tests, while modern methods embrace

targeted magnetic resonance imaging (MRI), ultrasound fusion prostate biopsy and conventional radiological imaging

. Each approach may have its own disadvantages in specificity, invasiveness or targeting accuracy, which restricts its

applications to patients with specific types or stages of the disease .Fortunately, PCa is the only known prostatic

disease associated with a substantial decrease of zinc levels ; neither prostatitis nor BPHexhibit this phenomenon ,

suggesting that zinc serves as an excellent candidate biomarker for PCa. Indeed, based on synthetic images generated

from clinical data of zinc distributions, zinc-baseddiagnostics could represent an approach superior to the serum PSA

test . Recently, several groups developed in vivo imaging strategies to simultaneously probe zinc presence and

detect PCa progression . Ghosh et al. employed a novel fluorescent zinc sensor ZPP1 that could precisely

bind two zinc ions to monitor cell malignant transformation in the TRAMP model and observed tumor progression related

to decreasing fluorescence intensity in an age-dependent manner. This study is the first report of using altered zinc levels

as an innate imaging biomarker for early PCa detection . Due to the limitations of optical imaging , several groups

attempted to optimize zinc measurement using MRI in the following years. Jordan et al. discovered a zinc-binding

gadolinium using a paramagnetic contrast agent and used it to detect extracellular zinc by proton MRI following glucose-

stimulated zinc secretion. This strategy let them differentiate healthy versus malignant mouse prostates, which could

provide a novel and highly specific approach for PCa diagnosis . More recently, using MRI based on 19F ion chemical

exchange saturation transfer (iCEST) and TF-BAPTA as a fluorinated zinc probe, Yuan et al. was able to discriminate

normal and malignant prostate cells with a 10-fold higher sensitivity than the method based on glucose-stimulated zinc

secretion. The iCEST-MRI allowed them to observe over 300% gradual zinc decrease in the in vivo transition of normal

PrECs to cancer cells . This study is the first attempt to use the 19F iCEST-MRI as a diagnostic tool for in vivo zinc

imaging. Since both iCEST and 19F MRI are clinically used, this approach possesses high translational potential for

clinical diagnosis of PCa. Despite these promising research and preclinical data, further exploration needs to focus on

developing zinc detection strategies with high specificity, sensitivity, and economic advantage to achieve early PCa

diagnosis.
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Noteworthily, decreased intraprostatic zinc levels generally coincide with significantly reduced expression of the zinc

transporters ZIP1, ZIP2, ZIP3 and ZIP4, which represents an early step in PCa development . Based on the

impacts of altered expression of these zinc transporters on PCa cell growth and metastasis, the expression levels of ZIP1,

ZIP2, ZIP3 and ZIP4 genes may also serve as potential biomarkers for early PCa diagnosis. Additionally, among the

upstream regulators of ZIP1 (RREB-1 and microRNA-183-96-182), the proteins modulating key zinc signaling pathways

(NF-κB, PI3K and MAPK), and ZF-containing TFs (AR, PLZF and SP1), many of them have been evaluated as or

determined to be potential assistant biomarkers for PCa diagnosis. In our opinion, zinc status and the genes involved in

zinc homeostasis could serve as an adjunctive measure to the traditional and modern methods of PCa diagnosis.

In the past decade, immunotherapy has proven to be an effective approach in the treatment of multiple cancer types,

especially melanoma and non-small cell lung cancer . For PCa, immunotherapies using immune checkpoint

inhibition, PSA vaccines and dendritic cell-based strategies have been intensively tested in clinical trials . Ample

evidence demonstrated zinc’s contribution to the maintenance of host systemic immune system, and thus, its moderate

levels could decrease inflammation and oxidative stress . Generally, zinc at its physiological levels is essential

to the growth, differentiation and biological function of various immune cells, including macrophages, dendritic cells,

neutrophils, mast cells, T cells and B cells . On the other hand, zinc deficiency leads to impaired immune

response and an increased risk of inflammation and tumorigenesis . Consistently, moderate zinc supplementation

can restore or even improve host defense and reduce both morbidity and mortality of various diseases, including

cancers . Therefore, targeting zinc signaling to prevent immune escape of tumor cells and promote immune cells

to eradicate cancers represents a logical and promising strategy in the treatments of PCa patients. However, due to the

high complexity of the immune microenvironment and high   heterogeneity of antitumor immune responses , the

application of targeting zinc signaling in immunotherapies has not been tested in either preclinical models or the patients

of PCa.
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