

Extremophilic Actinobacteria: Microbes to Medicine

Subjects: **Biology** | **Microbiology**

Contributor: Learn-Han Lee , Loh Teng-Hern Tan , Vengadesh Letchumanan , Chan Kok Gan , Jodi Woan-Fei Law

Actinobacteria constitute prolific sources of novel and vital bioactive metabolites for pharmaceutical utilization. In recent years, research has focused on exploring actinobacteria that thrive in extreme conditions to unearth their beneficial bioactive compounds for natural product drug discovery. Natural products have a significant role in resolving public health issues such as antibiotic resistance and cancer. The breakthrough of new technologies has overcome the difficulties in sampling and culturing extremophiles, leading to the outpouring of more studies on actinobacteria from extreme environments. This review focuses on the diversity and bioactive potentials/medically relevant biomolecules of extremophilic actinobacteria found from various unique and extreme niches. Actinobacteria possess an excellent capability to produce various enzymes and secondary metabolites to combat harsh conditions. In particular, a few strains have displayed substantial antibacterial activity against methicillin-resistant *Staphylococcus aureus* (MRSA), shedding light on the development of MRSA-sensitive antibiotics. Several strains exhibited other prominent bioactivities such as antifungal, anti-HIV, anticancer, and anti-inflammation. By providing an overview of the recently found extremophilic actinobacteria and their important metabolites, we hope to enhance the understanding of their potential for the medical world.

extremophile

actinobacteria

environment

bioactivity

metabolites

1. Introduction

Actinobacteria is a phylum of bacteria that comprises Gram-positive genera with high guanine and cytosine (G + C) content in their genomes and a few Gram-negative species [1][2]. Although actinobacteria are commonly present in terrestrial and aquatic ecosystems, they have a wide range of habitats, including extreme geographical locations such as deserts, hot springs, salt lakes, caves, and deep-sea [3][4][5][6]. In light of their abundance in such extreme environments accompanied by their well-known biosynthetic capabilities, scientists are interested in their metabolic versatility, discovering novel bioactive secondary metabolites, and their extracellular enzymes, which can be potentially propitious for pharmaceutical development [7][8][9][10][11].

Furthermore, actinobacteria have astonishing capabilities in adapting contaminated soil and efficiently decomposing organic materials such as hemicellulose and lignin through the actions of their metabolites [12]. Apparently, these bacteria can be bioindicators to toxic contaminants due to their higher sensitivity in detecting toxic elements [13]. Their unique tolerance to these contaminants accompanied by their degradation, biostimulation, and bioaugmentation abilities have enabled them to be great candidates for the bioremediation of heavy metals and organic pollutants [14][15][16]. Additionally, actinobacteria are incredible producers of agro-active and plant

growth-promoting (PGP) compounds such as siderophores and indole acetic acid [17][18]. Actinobacteria have a major contribution to the agriculture industry whereby numerous strains (either single strains or in consortia) or their associated compounds have been applied as biofertilizers, biopesticides, and biological control agents [19][20][21][22]. The utilization of actinobacteria to manage plant diseases and pests that damage agricultural crops is effective, cost-saving, and eco-friendly, thus, they can substitute and mitigate the use of harmful chemical fertilizers and pesticides

Actinobacteria can be categorized into two genera, *Streptomyces* and non-*Streptomyces* [23]. *Streptomyces* is the largest genus of Actinobacteria, and these bacteria are predominantly found in soil, but can also be present in various habitats such as marine/mangrove environments and plants [24][25][26][27]. *Streptomyces* are unique filamentous Gram-positive bacteria that produce vegetative hyphae [28][29][30]. About 80% of clinically used antibiotics are derived from actinobacteria, in which a good number of them are isolated from the genus *Streptomyces* [19][31][32][33]. Astoundingly, *streptomyces* remain as inexhaustible sources of antimicrobials to date [34][35]. In addition, about 17% of known active secondary metabolites are produced by this genus and many of them are of great medical significance [36][37][38][39]. For instance, Ivermectin, an antiparasitic agent is derived from *Streptomyces avermitilis* for treating lymphatic filariasis, was found to have a potent inhibitory effect on the growth of the formidable coronavirus disease 2019 (COVID-19) causative virus (SARS-CoV-2) [40][41]. Besides, *streptomyces* are also recognized as producers of antifungal, antitumor/anticancer, antioxidant, and antiviral agents [42][43][44].

In recent decades, the non-*Streptomyces* which is known as the rare actinobacteria (e.g., *Micromonospora*, *Microbacterium*, *Jishengella*, *Salinispora*, *Saccharopolyspora*, *Sinomonas*, *Nocardiopsis*, etc. [45][46][47][48][49]), has piqued the scientists' interest in discovering new unprecedented bioactive compounds produced by them. On the premise that extremophilic actinobacteria are a promising potential source of new drugs, we attempt to provide an overview of their bioprospecting aspects in this review.

2. Types of Extremophiles

Extremophiles are organisms that live in extreme habitats. They often have unique survival mechanisms to withstand harsh conditions such as high temperature, extreme pH, salinity, pressure, and aridity [50][51]. Extremophiles can be divided into two broad categories, namely, the extremotolerant and the extremophilic. In some cases, the scientific community applied the term "extremophilic organism" to exclusively define organisms requiring one or more extreme growth conditions. In comparison, extremotolerant organisms are those that are able to tolerate one or more physicochemical parameters [52]. Extremophile—the suffix '-phile' originated from the Greek word 'philos', which conveys the meaning of 'love' and 'preference' of extreme environments [11][53]. Some examples of different types of extremophiles are listed in the following [54][55]: (a) thermophile—an organism that grows best at high temperatures and is commonly found in hot places such as the desert; (b) psychrophile—an organism that grows best at low temperatures; (c) halophile—an organism that thrives in habitats with high salt concentrations, such as sea and salt lakes; (d) alkaliphile—an organism that grows best in an alkaline environment; (e) acidophile—an organism that grows best in an acidic environment; (f) barophile—an organism

that thrives at high-pressure conditions and is commonly found in deep-sea habitats; and (g) xerophile—an organism that grows best in an extremely arid area such as the desert. This review aims to collect information on actinobacteria present in various extreme environments and their potential to produce metabolites with bioactive properties such as antibacterial, antifungal, anticancer, and many more.

3. Actinobacteria in Extreme Environments

3.1 Extremophilic Actinobacteria in Hot Springs

Hot springs are usually formed by magma that heats the rainwater or underground water geothermally near the active volcanoes [56][57]. They are usually of low salinity (<0.5%) and have a wide range of pH values ranging from 0.5 to 9 [58]. Hot springs are for balneotherapy or recreational purposes and are a breeding ground for extremophilic actinobacteria. A thermophile is a type of extremophile that survives growth optimally at a temperature of more than 50 °C [59]. To prevent the protein from aggregating at high temperatures, they have special 'heat shock' proteins called chaperones responsible for unfolding the denatured protein damaged by heat [60].

In a study by Liu and colleagues [61], sediments were taken from Tengchong County of Yunnan Province in China. Fifty-eight actinobacteria isolates were recovered from 10 hot springs distributed among Hehua, Rehai, and Ruidian, in which two novel genera, *Thermoactinospora* and *Thermocatellispora*, were also identified. The sampling sites' temperature and pH ranged from 62 °C to 99 °C, and 2.5 to 9.0, respectively. It has been reported in another study that most of the thermophilic actinobacteria found in the Rehai were able to synthesize thermostable polymer-degrading enzymes which allow the bacteria to withstand the protein-denaturing temperature [62]. In particular, one of the strains produced cellulase, β-1,4-endoglucanase (Cel5A), which was highly tolerant to a high concentration of salt [62], and thus, indicates that the bacteria could be polyextremophilic and have a halotolerant property. Surprisingly, Liu, et al. [61] found that 53/58 strains were affiliated to 12 genera, namely, *Actinomadura*, *Micromonospora*, *Microbisporea*, *Micrococcus*, *Nocardiopsis*, *Nonomuraea*, *Promicromonospora*, *Pseudonocardia*, *Streptomyces*, *Thermoactinospora*, *Thermocatellispora*, and *Verrucosispora*, in which several isolates exhibited antibacterial activities against various common pathogens including *Acinetobacter baumannii*, *Micrococcus luteus*, and *Staphylococcus aureus*. Furthermore, one strain, *Micromonospora* YIM 78104, demonstrated a particular broad antibacterial property. This study suggested a variety of actinobacterial species that are yet to be explored from hot springs, in which their secondary metabolites may contribute to the development of new antibiotics.

Gholami, et al. [56] isolated a novel strain, *Kocuria rosea* MG2, from the Ab-e-Siah spring in Ramsar City in Iran with the highest natural radioactivity. Ab-e-Siah spring is a radioactive hypothermal spring with a recorded radon concentration of 146.5 Bq. I-1 [63]. Its temperature ranged from 28 to 35 °C with a pH value of 6.8 [56]. In this study, the MG2 strain was identified as *Kocuria rosea* by 16S rRNA gene sequencing. Multiple stress tests were carried out, and the results were captivating. It was found that this strain was polyextremophile and able to survive under multiple stresses such as high levels of UV-C radiation, hydrogen peroxide, and desiccation. It also exhibited

maximal growth at pH 9.2. It was suggested that carotenoids played an essential role in the photoprotective mechanism of the bacteria [56]. Carotenoids can absorb maxima at 450 nm, which makes them an effective antioxidant [64]. This study provides a basis for advanced research on developing antioxidant agents with natural biomolecules.

Contrary to the traditional views and perceptions, the studies above have proven that in extremophile actinobacteria from hot springs, it is not necessary to be thermophilic. They may even be polyextremophilic, in which further investigation is required. Actinobacteria from hot springs can have various mechanisms to combat the harsh conditions of hot springs. The biometabolites they synthesized could be a potential new source of medicine such as antibiotics and antioxidants.

3.2 Extremophilic Actinobacteria in Deserts

Deserts cover about one-fifth of the Earth's surface [65]. Deserts are incredibly arid (average annual rainfall less than 25 cm) [66] and have a wide range of temperatures and weather conditions with low nutrient status, making it difficult for most organisms to survive [67]. Although the general impression of a desert is patches of hot and empty land, some deserts are cold all year round. They can be classified into four categories: subtropical, cold, coastal, and semiarid [68]. Though deserts were once thought to be lifeless due to their extreme environments, recent studies have proven this perception is wrong. A wide range of actinobacteria are cultivatable in these places. To survive in such a harsh environment, living forms, including bacteria, need to have unique survival mechanisms to adapt to the extreme environment. Therefore, they tend to produce various interesting secondary metabolites which assist them in their survival.

Many studies have been carried out to investigate the actinobacteria isolated from deserts and analyze their bioactive potentials. Abenquines are new bioactive metabolites that Schulz, et al. [69] discovered. *Streptomyces* sp. strain DB634 was isolated from the soil taken from Salar de Tara of the Atacama Desert, Chile, which is known to be one of the driest places on earth with an average annual rainfall of about 15 mm; every one square meter only receives a depth of 15 mm water each year [70]. It also has the highest level of ultraviolet radiation on earth [71]. For

5. Conclusions the above factors, the environment of the Atacama Desert has been compared to that of Mars. In the study, four abenquines (A–D) were then isolated from the fermentation broth of *Streptomyces* sp. strain DB634 and found to be structurally related to aminobenzoquinones. Other studies have revealed that benzoquinones possess antioxidant and anticancer drug discovery. Many studies have proven the bioactive potential of these extremophilic actinobacteria properties in addition to anti-inflammatory effects [72]. Abenquines A and D demonstrated selective inhibition of phosphodiesterase type 4b (PDE4B), which is known to upregulate CYLD expression, a key modulator in actinobacteria. Nevertheless, further in-depth studies are required to explore the bioactive capabilities of these extremophilic actinobacteria. With this, extremophilic actinobacteria represent an alternative rich source of bioactive compounds suppressing inflammatory reactions [73]. Hence, these two abenquines can be a potential source for developing a new anti-inflammatory agent for inflammatory diseases. Besides, inhibition of PDE4 downregulates the production of cyclic adenosine monophosphate (cAMP), which is the cardinal regulator of both the innate and adaptive immune response, and it is also capable of suppressing T-cell-stimulating cytokines [74][75]. Therefore,

References

Four types of ansamycin-type polyketides, the chaxamycins A–D (Table 1), were identified from 1. Law, J.W.F.; Letchumanah, V.; Tah, L.T.H.; Ser, H.L.; Goh, B.H.; Lee, L.H. Editorial: The rising of the *Streptomyces* sp. strain C34 isolated from Salar de Tara of Atacama soil [76]. Ansamycin is a lipophilic antibiotic that possesses antitumor activity [76].

2. Verma, M.; Tal, D.; Kaur, J.; Saxena, A.; Kaur, J.; Anand, S.; Lal, R. Phylogenetic analyses of the phylum Actinobacteria based on whole genome sequences. *Res. Microbiol.* 2013, 164, 718–728.

3. Law, J.W.F.; Tah, K.-X.; Wong, S.H.; Ab Mutalib, N.-S.; Lee, L.-H. Taxonomic and characterization of chaxamycins A–D were evaluated with *Staphylococcus aureus* and *Escherichia coli* by the agar diffusion method. Methods of *Streptomyces*: A review. *Prog. Microbes Mol. Biol.* 2018, 1, a0000064.

4. Lee, L.-H.; Cheah, Y.-K.; Sidik, S.M.; Ab Mutalib, N.-S.; Tang, Y.-L.; Lin, H.-P.; Hong, K. Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production.

World J. Microbiol. Biotechnol. 2012, 28, 2125–2137.

5. Qin, S.; Li, W.-J.; Dastager, S.G.; Hozzein, W.N. Actinobacteria in special and extreme habitats:

Table 1. Summary of bioactivity of actinobacterial strains isolated from the Atacama Desert, Diversity, functions, and environmental adaptations. *Front. Microbiol.* 2016, 7, 1415.

Sampling Site	Strain	Extremophilic Properties	Sample Type	Bioactivity	Compound	IC50 or MIC	Reference
Salar de Tara of the Atacama Desert, Chile	Streptomyces sp. DB634	Polyextremophilic	Desert soil	Anti-inflammatory activity via human recombinant cyclic AMP (cAMP)-specific phosphodiesterase (PDE-4B2) inhibition	Abenquines A and D	IC50 Abenquines A: 4.6 ± 0.2 μM; Abenquines D: 4.2 ± 0.3 μM	[69]
Salar de Tara of the Atacama Desert, Chile	Streptomyces sp. C34	Polyextremophilic	Desert soil	Antibacterial activity against <i>E. coli</i> , <i>S. aureus</i> (MRSA and MSSA) Antitumor activity— inhibition of Hsp90	Chaxamycin D Chaxmycins A–D	MIC <i>E. coli</i> and <i>S. aureus</i> : <1.21 μg/mL IC50 N.A. ^a	[76]
1 At a high-altitude location (>5000 m) in Atacama Desert	Lentzea sp. H45	Polyextremophilic	Desert soil	Inhibition of HIV-integrase	Lentzeosides A–F	IC50 Lentzeoside A: > 100 μM; Lentzeoside B: > 100 μM; Lentzeoside C: 21 μM; Lentzeoside D: 16 μM; Lentzeoside E: 21 μM; Lentzeoside F: > 100 μM	[78]

lignocellulosic biomass conversion. *Adv. Biotech. Microbiol.* 2019, 13, 555874.

13. Madrova, P.; Vetrovsky, T.; Omelka, M.; Grunt, M.; Smutna, Y.; Rapoport, D.; Vach, M.; Baldrian, P.; Kopecky, J.; Sagova-Mareckova, M. A short-term response of soil microbial communities to cadmium and organic substrate amendment in long-term contaminated soil by toxic elements. *Front. Microbiol.* 2018, 9, 2807.

Sampling Site	Strain	Extremophilic Properties	Sample Type	Bioactivity	Compound	IC50 or MIC	Reference
Saudi Arabian desert	Streptomyces sp. DA3-7	Thermotolerant (proposed)	Desert soil	Antibacterial activity against: <i>E. coli</i> , <i>S. typhimurium</i> , <i>S. aureus</i> , <i>P. vulgaris</i> , <i>P. aeruginosa</i> , <i>E. faecalis</i> , <i>K. pneumoniae</i> Antifungal activity against: <i>C. albicans</i> , <i>S. cerevisiae</i> , <i>C. neoformans</i>	Pyridine-2,5-diacetamide	MIC <i>E. coli</i> : 31.25 µg/mL; <i>S. typhimurium</i> , <i>S. aureus</i> , <i>P. vulgaris</i> , <i>P. aeruginosa</i> , and <i>E. faecalis</i> : 62.5 µg/mL; <i>K. pneumoniae</i> : 125 µg/mL; <i>C. neoformans</i> : 31.25 µg/mL; <i>C. albicans</i> and <i>S. cerevisiae</i> : 62.5 µg/mL	[79] [143] (VI) ion. In aya, in-vivo 7,

18. Anilkumar, R.R.; Edison, L.K.; Pradeep, N. Exploitation of fungi and actinobacteria for sustainable agriculture. In *Microbial Biotechnology*; Patra, J.K., Vishnuprasad, C.N., Das, G., Eds.; Springer: Singapore, 2017; pp. 135–162.

19. Law, J.W.-F.; Ser, H.-L.; Khan, T.M.; Chuah, L.-H.; Pusparajah, P.; Chan, K.-G.; Goh, B.-H.; Lee, a Not available.
b The potential of *Streptomyces* as biocontrol agents against the rice blast fungus.

L.-H. The potential of *Streptomyces* as biocontrol agents against the rice blast fungus, *Magnaporthe oryzae* (*Pyricularia oryzae*). *Front. Microbiol.* 2017, **8**, 3.

Habitats with extreme aridity such as the Atacama Desert have drawn microbiologists' interest due to the variety of bioactive compounds found there. The bioactive compounds synthesized by *Streptomyces* have been used as the scaffolds for new drugs. Wicher, et al. [78] discovered six novel phytotoxins, lentzeosides A-F, from the Atacama Desert (**Table 1**), which demonstrated significant HIV integrase activity. The soil samples were collected from a high-altitude location (>5000 m) in northern Chile. *J. Plant Pathol.* 2001, **21**, 223.

where Lentzea sp. H45 was isolated. The compounds lentzeosides A-F produced by the strain were then tested for inhibitory activity against HIV-1 integrase at different concentrations [78]. HIV-1 integrase is a vital enzyme for nematode, *Meloidogyne incognita* in tomato. *Karnataka J. Agric. Sci.* 2009, **22**, 564–566. completing the HIV viral replication cycle at the post-entry phase and, therefore, has been the target for

21. Jayakumar, J. *Streptomyces avermitilis* as a biopesticide for the management of root knot nematode, *Meloidogyne incognita* in tomato. *Karnataka J. Agric. Sci.* 2009, **22**, 564–566.

22. Xiong, Y.; Wu, G.; Gopinath, R.; Wu, C.; Chen, P.; Li, Y.; Zhang, C.; Mi, Y.; Guo, B.; Li, Y.; Gao, Z.; Wang, K.; and Guo, S. Enhancement of growth and salt tolerance of tomato seedlings by a natural halotolerant IC50 actinobacterium. *Glutamic acid-producing bacterium L-BMP 5180 isolated from a coastal halophyte that lentzea*. *Plant Soil* 2010, **335**, 415–425.

23. Hu, D.; Sun, C.; Jin, T.; Fan, G.; Mok, K.M.; Li, K.; Lee, S.M.-Y. Exploring the potential of antibiotic production from rare actinobacteria by whole-genome sequencing and guided MS/MS analysis.

26. Kemung, H.M.; Law, J.W.-F.; Goh, B.-H. *Antioxidative Potential of Streptomyces sp. Strain MUSC 14 Isolated from Mangrove Soil in Malaysia*. *Front. Microbiol.* 2019, 10, 2325. [\[CrossRef\]](#) [\[PubMed\]](#)

27. Kemung, H.M.; Tan, L.T.-H.; Chan, K.-G.; Ser, H.-L.; Law, J.W.-F.; Lee, L.-H.; Goh, B.-H. *Antioxidant activities of Streptomyces sp. strain MUSC 14 from mangrove forest soil in Malaysia*. *BioMed Res. Int.* 2020, 2020, 6402607. [\[CrossRef\]](#)

28. Ser, H.-L.; Tan, L.T.-H.; Law, J.W.-F.; Chan, K.-G.; Duangjai, A.; Saokaew, S.; Pusparajan, P.; Ab Mutalib, N.-S.; Khan, T.M.; Goh, B.-H. *Focused review: Cytotoxic and antioxidant potentials of mangrove-derived Streptomyces*. *Front. Microbiol.* 2017, 8, 2065. [\[CrossRef\]](#)

29. Ser, H.-L.; Law, J.W.-F.; Chaiyakunapruk, N.; Jacob, S.A.; Palanisamy, U.D.; Chan, K.-G.; Goh, B.-H.; Lee, L.-H. *Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: A systematic review*. *Front. Microbiol.* 2016, 7, 522. [\[CrossRef\]](#)

30. Tan, L.T.-H.; Chan, K.-G.; Chan, C.K.; Khan, T.M.; Lee, L.-H.; Goh, B.-H. *Antioxidative potential of Eighteen marine actinobacteria were isolated from seawater, corals, and echinoderms in Avilés Canyon, Spain*. *Streptomyces sp. MUM292 isolated from mangrove soil*. *BioMed Res. Int.* 2018, 2018, 4823126. [\[CrossRef\]](#)

31. Law, J.W.-F.; Ser, H.-L.; Ab Mutalib, N.-S.; Saokaew, S.; Duangjai, A.; Khan, T.M.; Chan, K.-G.; Goh, B.-H.; Lee, L.-H. *Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential*. *Sci. Rep.* 2019, 9, 1–18. [\[CrossRef\]](#)

32. Lee, L.-H.; Zainal, N.; Azman, A.; Ser, H.-L.; Ab Mutalib, N.-S.; Goh, B.-H. *Streptomyces sp. Strain MUSC 86 and S. cyaneofuscatus M192 are able to produce bioactive compounds that inhibit methicillin and breast cancer cells*. *J. Prog. Environ. Sci.* 2014, 64, 8297–8306. [\[CrossRef\]](#)

33. Hopwood, D.A. *Streptomyces in Nature and Mediciné: The Antibiotic Makers*; Oxford University Press: New York, NY, USA, 2007.

34. Karpinski, T.M. *Marine macrolides with antibacterial and/or antifungal activity*. *Mar. Drugs.* 2019, 17, 241. [\[CrossRef\]](#)

35. Cheah, Y.-K.; Lee, L.-H.; Chieng, C.; Catherine, C.-Y.C.; Wong, V.-L.C.M. *Isolation, Identification and screening of actinobacteria in volcanic soil of deception Island (the Antarctic) for antimicrobial metabolites*. *Pol. Polar Res.* 2015, 36, 67–78. [\[CrossRef\]](#)

36. Harir, M.; Bendif, H.; Bellahcene, M.; Fortas, Z.; Pogni, R. *Streptomyces Secondary Metabolites: other than antibacterial*. Therefore, it will be worthy of investigating the compounds responsible for these observed bioactivities.

37. Kemung, H.M.; Tan, L.T.-H.; Chan, K.-G.; Ser, H.-L.; Law, J.W.-F.; Lee, L.-H.; Goh, B.-H.

Table 2. *Bioactivity of actinobacterial strains isolated from the deep-sea environment*
Investigating the antioxidant potential of Streptomyces sp. MUSC 11 from mangrove soil in Malaysia. *Prog. Drug Discov. Biomed. Sci.* 2019, 2, a0000033.

Sampling Site	Actinobacteria	Strain	Extremophilic Properties	Sample Type	Bioactivity	Extract	Compound	IC50 or MIC	Reference, P.;
3	<i>Streptomyces cyaneofuscatus</i>	M-169 and M-185		Coral				N.A.	
3	<i>Micromonospora tulbaghiae</i>	M-194	Halotolerant, psychrotolerant, and barotolerant	Coral	Antibiotic activity (>2 pathogens); moderate cytotoxic activity against HeLa and HCT 116 cells				es.
4	<i>Streptomyces carnosus</i>	M-207		Coral					
4	<i>Streptomyces carnosus</i>	M-220		Polychaete					
4	<i>Streptomyces sulfureus</i>	M-231		Decapod		Ethyl acetate extract	N.A. ^a		593. [86]
4	<i>Myceligerans cantabricum</i>	M-193		Starfish	Antibiotic activity against <i>M. luteus</i> and <i>Escherichia coli</i> only; moderate cytotoxic activity against HeLa and HCT 116 cells				
4	<i>Micromonospora aurantiaca</i>	M-235		Ophiroid	Antibiotic activity against <i>M. luteus</i> and <i>Streptococcus pneumoniae</i> only; moderate cytotoxic activity against HeLa and HCT116 cells				oxic. Prog.
4	<i>Streptomyces cyaneofuscatus</i>	M-157 and M-190		Coral					
4	<i>Streptomyces albidoflavus</i>	M-179		Polychaete	Antibiotic activity (>2 pathogens); strong cytotoxic activity (>50%) against HeLa and HCT 116 cells				
4	<i>Streptomyces cyaneofuscatus</i>	M-192		Actinia					
4	<i>Pseudonocardia carboxydivorans</i>	M-227		Sea water					Indian
4	<i>Pseudonocardia</i>	M-		Seawater	Antibiotic activity against <i>M. luteus</i> only; sp. nov., an amylolytic actinobacterium isolated from mangrove forest soil. Int. J. Syst. Evol. Microbiol. 2015, 65, 996–1002.				numi

48. Lee, L.-H.; Azman, A.-S.; Zainal, N.; Eng, S.-K.; Ab Mutalib, N.-S.; Yin, W.-F.; Chan, K.-G. *Microbacterium mangrovi* sp. nov., an amylolytic actinobacterium isolated from mangrove forest soil. Int. J. Syst. Evol. Microbiol. 2014, 64, 3513–3519.

49. Xie, Q.-Y.; Wang, C.; Wang, R.; Qu, Z.; Lin, H.-P.; Goodfellow, M.; Hong, K. *Jishengella endophytica* gen. nov., sp. nov., a new member of the family Micromonosporaceae. Int. J. Syst. Evol. Microbiol. 2011, 61, 1153–1159.

50. Kohli, I.; Joshi, N.C.; Mohapatra, S.; Varma, A. Extremophile—an adaptive strategy for extreme conditions and applications. Curr. Genom. 2020, 21, 96–110.

Sampling Site	Actinobacteria	Strain	Extremophilic Properties	Sample Type	Bioactivity	Extract	Compound	IC50 or MIC	Reference
	<i>carboxydivorans</i>	228			moderate cytotoxic activity against HeLa				
	<i>Micromonospora saelicesensis</i>	M-237		Ofiuroid					
Extreme Environments									
	<i>Streptomyces setonii</i>	M-178		Sponge	Antibiotic activity against <i>Neisseria gonorrhoeae</i> only; strong cytotoxic activity (>50%) against HeLa and HCT 116 cells				01. illa, Germany,
	<i>Streptomyces halstedii</i>	M-204		Ofiuroid	Antimicrobial activity against <i>Clostridium perfringens</i> and <i>Candida krusei</i> only; strong cytotoxic activity (>50%) against HeLa and HCT116 cells				
	<i>Streptomyces xiamensis</i>	M-186		Coral	Strong cytotoxic activity (>50%) against HeLa and HCT 116 cells				
	<i>Myceligerans cantabricum</i>	M-201		Coral	Moderate cytotoxic activity against HeLa and HCT 116 cells				19, 19,
HBOI collection (from Gulf of Mexico, Caribbean Sea, and east coast of the United States)	<i>Streptomyces</i> sp.	R818	Halophilic	Sponge	Antifungal activity against <i>C. albicans</i>	N.A.	Urauchimycin D	MIC <i>C. albicans</i> : 25 µg/mL	[89] f
	<i>Salinispora</i> sp.	M864	Halophilic	Sponge	Antibacterial activity against <i>C. difficile</i>	Ethyl acetate extract	N.A.	C. difficile: 0.125 µg/mL	

culturable thermophilic actinobacteria in hot springs in Tengchong, China and studies of their biosynthetic gene profiles. *Microb. Ecol.* 2016, **72**, 150–162.

62. Hedlund, B.P.; Cole, J.K.; Williams, A.J.; Hou, W.; Zhou, E.; Li, W.; Dong, H. A review of the microbiology of the Rehai geothermal field in Tengchong, Yunnan Province, China. *Geosci. Front.* 2012, **3**, 273–288.
63. Dabbagh, R.; Ghafourian, H.; Baghvand, A.; Nabi, G.; Riahi, H.; Nakhli, A. Discovery of the second highest level of radioactive mineral spring in Iran. *J. Radioanal. Nucl. Chem.* 2006, **269**, 91–94.
64. Stahl, W.; Sies, H. Antioxidant activity of carotenoids. *Mol. Asp. Med.* 2003, **24**, 345–351.
65. Varma, S.; Shah, V.; Banerjee, B.; Buddhiraju, K.M. Change detection of desert sand dunes: A remote sensing approach. *Adv. Remote Sens.* 2014, **3**, 10.
66. Australian Bureau of Statistics. Year Book Australia, 1992 No. 75; Australian Bureau of Statistics: Canberra, Australia, 2003. Available online: (accessed on 3 March 2021).

67. Makhalyan, A.T.; Polozova, A.; Görgen, C.; Erçin, S.; Gross, J.; Römling, J.; Böhm, D. A. Nevertheless, the application of the *in vitro* bioassay to the microbial ecology of hot desert sand dune systems. *FEMS Microbiol. Rev.* 2015, **39**, 203–221.

68. Logan, R.F. Causes, climates, and distribution of deserts. In *Desert Biology: Special Topics on the Physical and Biological Aspects of Arid Regions*; Academic Press: New York, NY, USA, 1968; various sites where the depths ranged from 150 fsw to 2790 fsw. Nineteen of the isolates belonged to the Volume 1, pp. 21–50.

69. Schulz, D.; Beese, R.; Ohlendorf, B.; Erhard, A.; Zinckner, H.; Dorador, C.; Imhoff, J.F. Ahenes A-D: Aminocoumarine derivatives produced by *Streptomyces* sp. strain DB634. *J. Antibiot.* 2011, **64**, 763–768.

70. Doran, P.T.; McKay, C.P.; Clow, G.D.; Dana, G.L.; Fountain, A.G.; Nylen, T.; Lyons, W.B. Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. *J. Geophys. Res. Atmos.* 2002, **107**, AGL 13-11–AGL 13-12.

71. Navarro-González, R.; Rainey, F.A.; Molina, P.; Bagaley, D.R.; Hollen, B.J.; de la Rosa, J.; Small, A.M.; Quinn, R.C.; Grunthaner, F.J.; Cáceres, L. Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. *Science* 2002, **302**, 1018–1021.

3.4. Extremophilic Actinobacteria in Caves

72. Dandawate, P.; Vyas, A.; Padhye, S.; Singh, M.; Baruah, J. Perspectives on medicinal properties of benzoquinone compounds. *Mini Rev. Med. Chem.* 2010, **10**, 436–454.

73. Komatsu, K.; Lee, J.; Miyata, M.; Kim, J.; Heo, J.; Kim, H.; Koga, T.; Xie, H.; Yan, C.; Kai, H. Limestone caves are formed by erosion and weathering over millions of years. *Geol. Soc. Am. Bull.* 1993, **105**, 1111–1117.

74. Bielekova, B.; Lincoln, A.; McFarland, H.; Martin, R. Therapeutic potential of phosphodiesterase-4 Moonmilk has long been regarded as a medication. From the 16th to 19th centuries, moonmilk was used as a and-3 inhibitors in Th1-mediated autoimmune diseases. *J. Immunol.* 2000, **164**, 1117–1124.

75. Kumar, N.; Goldminz, A.M.; Kim, N.; Gottlieb, A.B. Phosphodiesterase-4 targeted treatments for calcinosis and cardialgia, according to swiss naturalist Conrad Gesner (1516–1555). *Br. J. Rheumatol.* 1995, **34**, 100–103.

76. Kumar, N.; Goldminz, A.M.; Kim, N.; Gottlieb, A.B. Moonmilk caves formation involves microbial activity, many do not have a wide range of microbes such as bacteria, especially *Streptomyces*, fungi, and algae. *Microbiology* 2013, **11**, 96.

77. Rateb, M.E.; Houssen, W.E.; Arnold, M.; Abdelfrahman, M.H.; Deng, H.; Harrison, W.T.; Okoro, C.K.; Asenjo, J.A.; Andrews, B.A.; Ferguson, G. Chaxamycins A–D, bioactive ansamycins from a hyper-and desert *Streptomyces* sp. *J. Nat. Prod.* 2011, **74**, 1491–1499.

78. Hostein, I.; Robertson, D.; DiStefano, F.; Workman, P.; Clarke, P.A. Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in selective behavior of the isolates. For instance, 58% of the isolates in pure cultures died after the second round of inoculation in the study. It is likely to be caused by the absence of neighboring cultures and the substances emanated by them, a common mutualistic survival strategy adopted by organisms dwelling in an oligotrophic environment. *Cancer Res.* 2001, **61**, 4003–4009.

79. Wichter, D.; Tans, H.; Houssen, W.E.; McEwan, A.R.; Buij, A.T.; Asenjo, J.A.; Goodfellow, M.; Jaspars, M.; Eber, R.; Rateb, M.E. Isolation and anti-HIV-1 integrase activity of *Streptomyces* A-T from extremotolerant *Leptothrix* sp. H45, a strain isolated from a high altitude Atacama Desert soil.

80. Among all isolates, one extremely rare actinobacterium *Amycolatopsis* sp. MM1171 (actinobacterial abundance <0.901%) exhibited the most robust antibacterial activities against both Gram-positive and Gram-negative microbes (*E. coli*, *P. aeruginosa*, *Citrobacter freundii*, *K. pneumoniae*, *Bacillus subtilis*, *S. aureus*, and *M. luteus*) under all culture conditions [97] (Table 3). This finding rekindles the hope of researchers to search for novel

79. Tüfekci, M.; Korkmaz, G.; Bircan, B.; Alard, N.; Şik, K.; Kaya, M. Isolation and characterization of *Streptomyces* isolated during the purification process in the Desert. *Actinobacteria as a source of bioactive compounds* production with a special emphasis on Pyridine-2, 5-diacetamide a new pyridine alkaloid produced by *Streptomyces* sp. DA3-7. *Microbiol. Res.* 2018, 207, 116–133.

Table 3. Summary of bioactivity of actinobacterial strains isolated from caves.

80. Smith, S.J.; Zhao, X.Z.; Burke, T.R.; Hughes, S.H. HIV-1 integrase inhibitors that are broadly

Sampling Site	Actinobacteria	Strain	Sample Type	Bioactivity	Reference
	Amycolatopsis sp.	MMun171		Antibacterial activity against <i>E. coli</i> , <i>P. aeruginosa</i> , <i>C. freundii</i> , <i>K. pneumoniae</i> , <i>B. subtilis</i> , <i>S. aureus</i> , and <i>M. luteus</i>	[97]
Moonmilk cave Grotte des Collemboles, Belgium	<i>Kocuria rhizophila</i>	MMun160	Moonmilk		[159]
	<i>Streptomyces</i> sp.	MMun141 MMun146 MMun156		Strong antibacterial activity, particularly against <i>B. subtilis</i> , <i>S. aureus</i> , and <i>M. luteus</i>	V.A.; ocean
Shuanghe Karst Cave, Guizhou province, China	<i>Streptomyces badius</i>	S142	Bat guano	Antimicrobial activity against <i>E. coli</i> , <i>S. aureus</i> , <i>B. cinerea</i>	[98]
	<i>Actinoplanes friuliensis</i>	S761	Rock soil		ed to unisms.

85. Dalmaso, G.Z.L.; Ferreira, D.; Vermelho, A.B. Marine extremophiles: A source of hydrolases for biotechnological applications. *Mar. Drugs* 2015, 13, 1925–1965.

86. Sarmiento-Vizcaíno, A.; González, V.; Braña, A.F.; Palacios, J.J.; Otero, J.; Fernández, J.; Molina, A.; Kulik, A.; Vázquez, F.; Acuña, J.L. Pharmacological potential of phylogenetically diverse *Actinobacteria* isolated from deep-sea coral ecosystems of the submarine Avilés Canyon in the Cantabrian Sea. *Microb. Ecol.* 2017, 73, 338–352.

87. Li, Q.; Lee, R.X.; Zhang, Y.; Zhang, Y.; Yang, Y. Anticancer activity of elemene and its synthetic analogs investigated by Long et al. [98]. The antimicrobial activity of these isolates was screened, and 16 out of 45 isolates

88. Zhang, G.-N.; Ashby, C.R.; Zhang, Y.-K.; Chen, Z.-S.; Guo, H. The reversal of antineoplastic drug resistance in cancer cells by β -elemene. *Chin. J. Cancer* 2015, 34, 45.

89. Xu, X.; Han, J.; Harvel, A.; Gao, Q.; Zhou, D.; Barrett, N.H.; Hamdy, A.; Chen, J.; Liu, J.; McCarthy, P.J. Prospecting deep-sea actinobacteria for novel anti-infective natural products. *Front. Microbiol.* 2018, 9, 787.

90. Naik, P.M.; Al-Khayri, J.M. Abiotic and biotic elicitors—role in secondary metabolites production through in vitro culture of medicinal plants. In *Abiotic and Biotic Stress in Plants—Recent Advances and Future Perspectives*; InTech: Rijeka, Croatia, 2016; pp. 247–277.

3.5. Extremophilic Actinobacteria in Salt Lakes

91. Oster, S.; Hedges, G.; Gering, J.; Dunlap, J.; Johnson, J.; Hove, K.; Kelly, C.; Pinter, S.; Vargas, M.; Donaldson, C.; Clegg, P.; Salt, J. *Caves as reservoirs for antibiotic resistance*. *Environ. Microbiol.* 2010, 12, 2010–2018. [\[CrossRef\]](#)

92. Wilson, M. *Guidelines for the clinical practice guidelines for Clostridioides difficile infection in adults*; 2010 Update by the Infectious Disease Society of America (IDSA) and the Society for Healthcare Epidemiology of America (SHEA). *Clin. Infect. Dis.* 2010, 51, 1023–1055. [\[CrossRef\]](#)

93. Gillieson, D. *Caves: Processes, Development and Management*; John Wiley & Sons: Hoboken, NJ, USA, 2009.

94. Northup, D.E.; Lavoie, K.H. *Geomicrobiology of caves: A review*. *Geomicrobiol. J.* 2001, 18, 199–222. [\[CrossRef\]](#)

95. Pelletier, B. *Empire Biota: Taxonomy and Evolution*, 2nd ed.; Lulu.com: Morrisville, CA, USA, 2012. Available online: [http://www.lulu.com/empire-biota](#) (accessed on 3 March 2021).

96. Maciejewska, M.; Adam, D.; Naomé, A.; Martinet, L.; Tenconi, E.; Cieślinska, M.; Delfosse, P.; Hämäläinen, M.; Baurain, D.; Compère, P. *Assessment of the potential role of Streptomyces in cave moonmilk formation*. *Front. Microbiol.* 2017, 8, 1181. [\[CrossRef\]](#)

97. Adam, D.; Maciejewska, M.; Naomé, A.; Martinet, L.; Coppieters, W.; Karim, L.; Baurain, D.; Rigali, S. *Isolation, characterization, and antibacterial activity of hard-to-culture actinobacteria from cave moonmilk deposits*. *Antibiotics* 2018, 7, 28.

98. Long, Y.; Jiang, J.; Hu, X.; Zhou, J.; Hu, J.; Zhou, S. *Actinobacterial community in Shuanghe Cave using culture dependent and independent approaches*. *World J. Microbiol. Biotechnol.* 2019, 35, 153. [\[CrossRef\]](#)

99. Pardo-Igúzquiza, E.; Dowd, P.A.; Xu, C.; Durán-Valsero, J.J. *Stochastic simulation of karst conduit networks*. *Adv. Water Resour.* 2012, 35, 141–150. [\[CrossRef\]](#)

100. Pardo-Igúzquiza, E.; Williams, P.S. *Streptomyces: Their polyextremophilic properties were evaluated*. *Results* showed that 201351 isolates demonstrated high resistance to UVB radiation. Furthermore, several isolates were able to tolerate and grow in an extremely high pH value of 12, indicating that they are incredibly alkaliphilic. Regarding their halotolerant property, all strains could tolerate 5% NaCl, but only 21 of the isolates were able to tolerate up to 25% NaCl. The antagonistic activities were studied against *S. aureus*, *E. coli*, *Actinoplanes friuliensis* sp. nov. *J. Antibiot.* 2000, 53, 816–827.

101. Vertes, L.; Ehlers, E.; Kogler, H.; Kurz, M.; Meiweis, J.; Seibert, G.; Vogel, M.; Hammann, P. *Friulimicins: Novel Lipopeptide Antibiotics with Peptidoglycan Synthesis Inhibiting Activity from *Actinoplanes friuliensis* sp. nov.* *J. Antibiot.* 2000, 53, 816–827.

102. Baxter, B.K. *Great Salt Lake microbiology: A historical perspective*. *Int. Microbiol.* 2018, 21, 79–95. [\[CrossRef\]](#)

103. Last, W.M. *Geobiology of salt lakes*. *Geosci. J.* 2002, 6, 347–369. [\[CrossRef\]](#)

104. Albarracín, V.H.; Pathak, G.P.; Douki, T.; Cadet, J.; Borsarelli, C.D.; Gärtner, W.; Farias, M.E.

Table 4. *Supplementary antibiotic activity of actinobacteria strains isolated from salt lakes*.

UV-B resistance and efficient DNA damage repair. *Orig. Life Evol. Biosph.* 2012, 42, 201–221.

Sampling Site	Actinobacteria	Sample Type	Bioactivity	Reference
10 Laguna Diamante, Antofalla, Laguna Santa María, Laguna Socompa, Tolar Grande, and Salina Grande, Argentina	Actinobacterial strains of 11 genera Streptomyces, Micrococcus, Microbacterium, Nesterenkonia, Kocuria, Rhodococcus, Arthrobacter, Micromonospora, Blastococcus, Brevibacterium, and Citricoccus	Soil, stromatolite, sediment, water, and flamingo feces	Antibacterial activity against <i>E. coli</i> , <i>Bacillus</i> , <i>E. faecalis</i> , <i>S. aureus</i> , and <i>Rhodotorula</i> sp. (at least 1)	[105]
10				duced
107. Wu, J.; Peng, Z.; Guan, I.-W.; Yang, H.; Tian, X. Diversity of actinobacteria in sediments of Qaidam Lake and Qinghai Lake, China. <i>Arch. Microbiol.</i> 2021, 1–11.				
108. Mohammadipanah, F.; Wink, J. Actinobacteria from arid and desert habitats: Diversity and biological activity. <i>Front. Microbiol.</i> 2016, 6, 1541.				
109. Crits-Christoph, A.; Robinson, C.K.; Barnum, T.; Fricke, W.F.; Davila, A.F.; Jedynak, B.; McKay, C.P.; DiRuggiero, J. Colonization patterns of soil microbial communities in the Atacama Desert. <i>Microbiome</i> 2013, 1, 28.				
Undoubtedly, salt lakes are a cradle for polyextremophiles and hold great potential for pharmaceutical applications.				
110. Grossart, H.-P.; Schlingloff, A.; Bernhard, M.; Simon, M.; Brinkhoff, T. Antagonistic activity of the actinobacteria obtained from HAALS are highly UV-resistant and exhibit good antimicrobial activity. The UV-resistance and DNA-regulatory proteins are potentially beneficial to the development of antioxidants and, therefore, should be further investigated. <i>FEMS Microbiol. Ecol.</i> 2004, 47, 387–396.				
111. Zeng, Q.; Huang, H.; Zhu, J.; Fang, Z.; Sun, Q.; Bao, S. A new nematicidal compound produced by <i>Streptomyces allogriseolus</i> HA10002. <i>Antonie Van Leeuwenhoek</i> 2013, 103, 1107–1111.				
4. Discussion				
112. Zhang, W.; Wei, S.; Zhang, J.; Wu, W. Antibacterial activity composition of the fermentation broth Based on the different extreme environments discussed in this review, deserts and the deep sea are the most of <i>Streptomyces djakartensis</i> NW35. <i>Molecules</i> 2013, 18, 2763–2768.				
favorable environments for the isolation of bioactive actinobacteria. Compounds with potential applications in				
113. Kumar, P.S.; Yuvaraj, P.; Palani, M. G. Isolation of the <i>Streptomyces</i> and <i>Actinomyces</i> from salt lakes. <i>Antibiotic Prospecting of salt</i> <i>Streptomyces</i> and its bioassay-guided isolation of microbial [108] derived auxin with antifungal properties. <i>J. Mycol. Med.</i> 2018, 28, 462–468.				
to properties. <i>J. Mycol. Med.</i> 2018, 28, 462–468. Similarly, it has been suggested that actinobacteria make up to about 10% of the bacteria colonizing aggregates in the sea, and their antagonistic activity is significant for their survival [110] .				
114. Mbah, J.A.; Ngemenya, M.N.; Abawar, A.L.; Bablaka, S.B.; Nubed, L.N.; Nyongbela, K.D.; Lemuh, N.D.; Efange, S.M. Bioassay-guided discovery of antibacterial agents: In vitro screening on the literature findings. However, the research on extremophilic actinobacteria's medical applications from salt of <i>Peperomia vulcanica</i> , <i>Peperomia fernandopoliana</i> and <i>Scleria striatinux</i> . <i>Ann. Clin. Microbiol. Antimicrob.</i> 2012, 11, 10.				
Besides, hot springs posed another excellent source for the isolation of bioactive thermophilic actinobacteria based on the literature findings. However, the research on extremophilic actinobacteria's medical applications from salt lakes was thus far minimal. More research is needed as salt lakes are potentially an excellent source for beneficial bioactive compounds.				
115. Steinbeck, C.; Kuhn, S. NMRShiftDB—compound identification and structure elucidation support Forthright, a community-built web database. <i>Phytochemistry</i> 2014, 65, 2711–2717.				
observed bioactivities. A typical approach to extract and purify the bioactive compounds from the bacteria would be through bioassay-guided fractionation [111] [112] [113] . With the chromatography separation techniques, pure compound isolation can be achieved following elucidation of compound structure [114] [115] .				
116. Law, J.W.-F.; Chan, K.-G.; He, Y.-W.; Khan, T.M.; Ab Mutalib, N.-S.; Goh, B.-H.; Lee, L.-H. Diversity of <i>Streptomyces</i> spp. from mangrove forest of Sarawak (Malaysia) and screening of their antioxidant and cytotoxic activities. <i>Sci. Rep.</i> 2019, 9, 1–15.				
117. Grossart, H.-P.; Ghosh, S.; Sprout, A.; Overy, D.; Ratnayake, C.; Cheetham, N.; Boddy, C. Whole genome sequencing and metabolomic study of two <i>Streptomyces</i> isolates IC1 and IC4. <i>Front. Microbiol.</i> 2019, 10, 1029.				
In particular, the streptomycetes possessed a prolific potential to synthesize a significant number of				

118. Ser, H.-L.; Ab Mutalib, N.-S.; Goh, B.-H.; Lee, L.-H. Complete genome of *Chryseobacterium* sp. MUSC 135T isolated from mangrove forest. *Prog. Microbes Mol. Biol.* 2018, 1, a000001.

119. Omura, S.; Ikeda, H.; Ishikawa, J.; Hanamoto, A.; Takahashi, C.; Shinose, M.; Takahashi, Y.; Horikawa, H.; Nakazawa, H.; Osonoe, T. Genome sequence of an industrial microorganism *Streptomyces avermitilis*: Deducing the ability of producing secondary metabolites. *Proc. Natl. Acad. Sci. USA* 2001, 98, 12215–12220.

can also be accomplished through a genomic approach.

120. Lee, N.; Kim, W.; Hwang, S.; Lee, Y.; Cho, S.; Palsson, B.; Cho, B.-K. Thirty complete *Streptomyces* genome sequences for mining novel secondary metabolite biosynthetic gene clusters. *Sci. Data* 2020, 7, 1–9.

121. Ser, H.-L.; Chan, K.-G.; Tan, W.-S.; Yin, W.-F.; Goh, B.-H.; Ab Mutalib, N.-S.; Lee, L.-H. Complete genome of mangrove-derived anti-MRSA streptomycete, *Streptomyces pluripotens* MUSC 135T. *Prog. Microbes Mol. Biol.* 2018, 1, a0000004.

122. Ser, H.-L.; Law, J.W.-F.; Tan, W.-S.; Yin, W.-F.; Chan, K.-G.; Lee, L.-H. Genome sequence of bioactive streptomycete isolated from mangrove forest in East Malaysia, *Streptomyces monashensis* MUSC 1JT. *Prog. Drug Discov. Biomed. Sci.* 2019, 2, a0000045.

123. Ser, H.-L.; Law, J.W.-F.; Tan, W.-S.; Yin, W.-F.; Chan, K.-G. Whole genome sequence of *Streptomyces colonosanans* strain MUSC 93JT isolated from mangrove forest in Malaysia. *Prog. Microbes Mol. Biol.* 2020, 3, a0000061.

124. Ser, H.-L.; Tan, W.-S.; Ab Mutalib, N.-S.; Cheng, H.-J.; Yin, W.-F.; Chan, K.-G.; Lee, L.-H. Genome sequence of *Streptomyces pluripotens* MUSC 135T exhibiting antibacterial and antioxidant activity. *Mar. Genom.* 2015, 24, 281–283.

125. Ser, H.-L.; Tan, W.-S.; Cheng, H.-J.; Yin, W.-F.; Chan, K.-G.; Ab Mutalib, N.-S.; Goh, B.-H.; Lee, L.-H. Draft genome of starch-degrading actinobacterium, *Microbacterium mangrovi* MUSC 115T isolated from intertidal sediments. *Prog. Drug Discov. Biomed. Sci.* 2018, 1, a0000005.

126. Li, S.; Li, Y.; Lu, C.; Zhang, J.; Zhu, J.; Wang, H.; Shen, Y. Activating a cryptic ansamycin biosynthetic gene cluster to produce three new naphthalenic octaketide ansamycins with n-pentyl and n-butyl side chains. *Org. Lett.* 2015, 17, 3706–3709.

Retrieved from <https://encyclopedia.pub/entry/history/show/26000>