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Low-emission and high-efficiency have always been the targets for Internal Combustion Engine development. For diesel

engines, homogeneous charge (aka. HCCI) and premixed charge (aka. PCCI) combustion modes provide both low-

emission and high-efficiency simultaneously. To achieve these advanced combustion modes, early injection is needed as

a relatively longer air-fuel mixing time is guaranteed. Several key parameters, such as the injection timing, pressure,

angle, directly determine the final combustion process and thus the emission and efficiency performance. The pros and

cons of these key parameters are discussed in detail here to provide a good review of the early-injection strategy.
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1. Advanced Combustion Modes: HCCI and PCCI

The conventional diesel combustion process can be classified into four major phases: ignition delay, premixed

combustion, mixing controlled combustion, and the late burning phase . The conventional combustion phase regime

encompasses both NOx and soot islands, as shown in Figure 1. This is not preferable while considering the more and

more stringent emission regulations. Therefore, advanced combustion modes that could eliminate or avoid the fuel-rich

and high-temperature environment are needed.

Figure 1. φ-T diagram of conventional combustion, homogeneous charge compression ignition (HCCI) combustion, and

premixed charge compression ignition (PCCI) combustion . φ, equivalence ratio; T, temperature.

HCCI combustion was first proposed by Onishi et al.  and Noguchi et al. . The main characteristic of HCCI is a (more or

less homogeneous) premixed air-fuel mixture that undergoes auto-ignition as a result of compression. A major difficulty in

HCCI is to get a homogeneous admixture of air and fuel. Besides, the high cetane number of conventional diesel fuel

results in large rates of pressure rise and difficulties in combustion phasing control .

PCCI combustion has been described as a middle path between conventional and HCCI combustion modes .

For PCCI combustion, only part of the fuel undergoes the HCCI type of clean combustion, while the remainder undergoes

conventional combustion. Table 1shows that both HCCI and PCCI provide clear advantages out of the conventional diesel

combustion mode regarding the soot and NOx emissions.

Table 1. Comparison of key characteristics of conventional diesel, HCCI, and PCCI combustion.
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2. Early Injection Strategy Definition

In order to allow enough time for fuel to mix with the air before combustion, the early injection strategy, by which the fuel is

injected in an early stage of the compression stroke, has been applied widely in HCCI and PCCI diesel engines. The start

of early injection is typically 20–200 before the top dead center(BTDC). Based on the characteristic of HCCI and PCCI

combustion, the early injection strategy can be classified as a single injection and two-stage injection, as seen in Figure 2.

For a two-stage injection, the first injection is also called the pilot injection, and the second injection is also called the main

injection. Based on the injection timing, the early injection strategy can be divided into three patterns, as seen in Figure 3:

The injection closest to TDC is defined as late; that farthest from TDC is defined as early, and the one in between is

defined as middle . The demarcation points of these three patterns in this paper are defined as 60, 40, and 20 BTDC,

respectively.

Figure 2. Single and two-stage early injection strategy.

[14]



Figure 3. Early injection strategy divided by injection timing.

Using the early injection strategy will cause a wall-wetting problem and leads to (1) low combustion eciency, (2) excessive

soot/carbon monoxide (CO)/hydrocarbon (HC) emissions, and (3) (local) oil dilution . Many methods, including

limiting the injection angle, have been proposed to limit or reduce wall-wetting.

Overall, there are several key parameters in the early-injection process that define the final combustion and emission

performances. The effects of fuel injection pressure, injection timing, and injection angle on engine performance and

emissions are discussed in detail separately in the following sections.

3. Effects of Injection Pressure

Injection pressure could change the combustion and the emissions significantly as it directly determines the fuel spray,

injection duration, and therefore the time to mix air and fuel into a homogenous mixture. However, it is not a

straightforward approach to have lower emissions by simply increasing the injection pressure. Table 2 below gives details

about the emissions along with changing the injection pressure.

Table 2. Variation of performance and emissions after increasing the injection pressure. BSFC, brake-specific fuel

consumption. 

Author
Injection
Pressure

(bar)
Fuel BSFC NOx HC CO Soot

Jeong et al. 500–900 Diesel na → na na ↓

Fang et al.

 
600/1000 Diesel na ↑ na na ↓

Shimazaki

et al.

300–

1200
Diesel ↓↑ ↓ ↑ ↑ →

Kiplimo et

al.
800/1400 Diesel ↓ ↑ ↓ → ↓

Liu et al.
600–

1400
Diesel na na na na →
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Chen et al. 1000–

1400
Diesel ↓ ↑ na na ↓

Siewert
800–

1600
Diesel ↓ na ↓ ↓ ↓

Park et al. 400/1200
Bioethanol

blends
↓ ↑ ↑ ↑ ↓

Arun et al. 200–240

Carbon

black–

water–

diesel

na ↓↑ ↓↑ ↓↑ ↓↑

Nanthagopal

et al.
200–240 Biodiesel ↓ ↑ ↓ ↓ ↓

4. Effects of Injection Timing

On one hand, injecting the fuel at an earlier time prolongs the ignition delay and helps to create a more homogeneous

mixture. The formed lean mixture is then burned at a low temperature, resulting in low NOx emissions. On the other hand,

the cylinder pressure and temperature are low under earlier injection timing, which leads to poor fuel evaporation and the

wall-wetting problem.

4.1 Single Early Injection Timing Effects

Table 3 shows a summary of the variation of performance and emissions of the HCCI engine after advancing the early

injection timing. In general, advancing the injection timing results in better NOx emissions but worse HC and CO

emissions. However, the final soot emission depends on the opposite effects mentioned above. Engine performance

deteriorates with advanced injection timing due to the increased negative work and incomplete combustion.

Table 3. Variation of performance and emissions after advancing the early injection timing (single). 

Author

Injection
Timing

(°
BTDC)

Fuel BSFC NOx HC CO Soot

Benajes et

al.
33–24 Diesel na na ↑ ↑ ↑

Kiplimo et

al.
40–20 Diesel ↑ ↓ ↑ ↑ ↑

Kim and

Lee
70–20 Diesel ↑ ↓ na na na

Fang et al. 80–40 Diesel na ↓ na na ↑

Kim et al. 180–20 Diesel ↑ na na na ↓
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Kim et al. 180–20 Diesel ↑ ↓ na na ↓

Miyamoto

et al.
180–20 Diesel na ↓ ↑ na ↓

Kook et al. 200–50 Diesel ↑ ↓ ↑ ↑ ↓

Park et al. 40–20
Bioethanol

blends
↑ ↓ ↑ ↑ ↑

Yoon et al. 40–20 DME ↑ ↓ ↑ ↑ →

Kim et al. 40–20 Gasoline ↑ ↓ ↑ ↑ na

Wamankar

and

Murugan

26–20 Diesel ↑ ↓ ↑ ↑ ↑

4.2 Two-stage Early Injection

In PCCI combustion, a two-stage early injection strategy is utilized. In general, advancing the first injection timing will

decrease NOx and soot emissions and increase HC and CO emissions. Engine performance deteriorates with advanced

injection timing due to the increased negative work and incomplete combustion. The second injection is considered to act

as the ignition controller and promoter of PCCI combustion. The second injection timing mainly influences the second

stage of the combustion process, which is mainly diffusive combustion. With retarded second injection timing, the major

combustion event was delayed. The variation of BSFC of different second injection timings mainly depended on whether

the combustion event shifted to near TDC. In addition, NOx emissions decreased when the second injection timing was

retarded because of the low charge temperature caused by the late combustion. Soot emissions generally increased as

the second injection was retarded. This was because of the increased portion of diffusion combustion and low charge

temperature. HC and CO emissions also increased with retarded second injection timing.

5. Effects of Injection Angle

Wall-wetting caused by the early injection strategy directly influenced the performance and emissions of the HCCI diesel

engine. Limiting the injection angle has been proved to be a useful approach to reduce the wall-wetting phenomenon. The

magnitude and direction of the spray rotation in the bowl were directly affected by the injection angle, as shown in Figure

4. This difference further impacted the fuel-air mixing in the piston bowl and finally impacted combustion and emissions.

As mentioned above, the impingement target is an important factor influencing emissions and is commonly determined by

the injection timing, injection angle, and piston structure.
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Figure 4. Schematic diagrams of the tested combustion chamber and fuel spray: (a) conventional diesel engine; (b)

modified engine configuration for early injection .

Table 4 shows a summary of the variation of performance and emissions of HCCI and PCCI engines after decreasing the

injection angle. In general, decreasing the injection angle will limit or reduce the wall-wetting phenomenon, resulting in

decreased HC and CO. However, soot emission is directly affected by the placement of spray targeting. Decreasing the

injection angle generally is not good for the control of soot emission, but NOx emission can be suppressed by the rich

fuel-air mixture and low combustion temperature.

Table 4. Variation of performance and emissions after decreasing the injection angle (two-stage).

Author
Injection
Angle (°)

Fuel BSFC NOx HC CO Soot

Kim and

Lee
60/156 Diesel ↓ → na na na

Fang et

al.
70/150 Diesel na ↓ na na ↑

Kim et al. 70–150 Diesel ↓ na na na ↑

Mobasheri

and Peng
90–145 Diesel ↓↑ ↓ na na ↓↑

Vanegas

et al.
100–148 Diesel na ↑ na na ↑

Kook and

Bae
100/150 Diesel na ↑ ↓ ↓ ↓

Siewert 100–158 Diesel na na ↓ ↓ ↓

Park et al. 70/156
Bioethanol

blended
↓ na ↓ ↓ na
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Yoon et

al.
60/70/156 DME ↓ → ↓ ↓ →

 6. Combination of Early-Injection and Alternative Fuels

Changing the fuel properties and using alternative fuel are also promising ways to improve the combustion and emissions

of HCCI and PCCI engines . Biodiesel fuel, as one alternative diesel fuel, is currently of great interest and an

important research subject. Biodiesel fuels contain oxygen and thus provide an effective way to eliminate the over-rich

regions and enhance the combustion process, resulting in low soot, HC, and CO emissions . Dimethyl ether

(DME) is another alternative fuel. Its good ignition capability and high latent heat lead to decreased cylinder temperature

in the combustion phase . Besides, the oxygenated molecular structure and good atomization properties help in the

formation of a leaner and more homogeneous mixture. The alternative fuels bioethanol and n-butanol are also widely

used due to their high oxygen concentration .

As HCCI combustion is mainly controlled by chemical kinetics, the combustion process and burning rate are dependent

on fuel properties. Studies have shown that optimal physicochemical properties are needed under different operating

conditions; e.g., fuel with a high cetane number is required for light loads and high-octane fuel for heavy loads .

Gasoline/diesel dual-fuel combustion was proved to be a useful approach to control the combustion phasing and heat

release rate of HCCI by adjusting the blending ratio according to different operating conditions .

7. Summary and Conclusions

Several key parameters in early injection strategy were covered and discussed here mainly focus on engine combustion

and emission performances. Both experimental and numerical works had been conducted widely, and the advantages and

disadvantages, in terms of the engine emissions, of early injection strategy are listed in Table 5.

Table 5. Advantages and disadvantages of early injection parameters.
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