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Gas chromatography-ion mobility spectrometry (GC-IMS) is a powerful technique for the separation and sensitive
detection of volatile organic compounds (VOCS). It is a rapid, robust and easy-to-handle technique, which has
recently gained attention for targeted as well as non-targeted screening (NTS) approaches. In this article, the
general working principles of GC-IMS are presented.

gas chromatography ion mobility spectroscopy (GC-IMS) volatile organic compounds (VOCs)

non-targeted screening (NTS) using machine learning

| 1. Introduction

Quality control and early detection of hazard chemicals, allergens, or biological contaminants are a critical measure
to ensure product safety. Environmental pollutants, pesticides, or toxins, among others, can compromise food
safety and pose a public health risk L. Furthermore, food adulteration and food fraud, accelerated by globalization,
continue to cause economic losses and customer dissatisfaction and emphasize the need for robust, inexpensive,
and fast analytical methods [2. Due to the inherent diversity of biogenic samples, as observed in food analysis, and
the chemical complexity of the sample matrices, analytical approaches covering a multitude of parameters in
parallel paired with strong discrimination power are required !, Analysis of the volatile organic compounds (VOCs)
of samples, also known as VOC profiling, allows for the detection of compounds in complex sample matrices
without the need for detailed a priori knowledge of the molecular composition. Furthermore, VOC profiling can be
performed without advanced sample preparation and without the need for detailed knowledge of the molecular
composition. Gas chromatography-mass spectrometry (GC-MS) is commonly used for VOC analysis, however,
typically requires specific laboratory infrastructure, such as helium gas supply and vacuum technology. As an
alternative with significantly less demand on infrastructure, ion mobility spectrometry (IMS) has gained more and
more popularity over the last years. Due to its high sensitivity and resolving power on the one hand and its
simplicity and robustness on the other, IMS has become a powerful tool for VOC based trace analyses 4.
Moreover, gas chromatography coupled to ion mobility spectroscopy (GC-IMS) has been shown to be an easy-to-
handle and yet highly effective tool for VOC profiling Bl. The complexity of biological samples results from the
presence of a variety of compounds, which in their entirety provide a characteristic GC-IMS spectrum, often
referred to as the VOC profile or “fingerprint” L2, Due to the large amount of data obtained by VOC profiling based
on GC-IMS, machine learning tools are required for data analysis. In literature, these are often differentiated into

targeted screening and non-targeted screening (NTS) approaches. In short, targeted analysis is based on defining
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specific markers before analysis, while NTS of GC-IMS data usually does not require prior knowledge and the

entire spectral fingerprint is subject to data analysis.

| 2. Operating principles of IMS

Since the 1970s, when IMS was first known as ‘plasma chromatography’, IMS has developed into a highly
sensitive technique for the analysis of VOCs at ultra trace concentration levels, which accounts for additional
information regarding the ion’s mobility [BIXE] Due to the robust and easy-to-handle instrumentation, a wide range
of application fields have been found for IMS today, such as food flavor analysis 4, process monitoring [EIl29 and

quality control 11, as well as detection and quantification of warfare agents 22l and explosives [231[14]

With IMS, analytes are first ionized in the ionization region of the instrument. The most common ionization method
is the atmospheric pressure chemical ionization 12 by beta emitters, such as nickel-63 BB or the less
hazardous beta-emitting tritium [, or alpha-emitting americium-241 [I&. Other ionization methods are atmospheric
pressure photo ionization (APPI) 19, corona discharge (CD) atmospheric pressure chemical ionization RIEIBILL  of

laser desorption/ionization technique (LDI) (121,

According to the European Union directive, the exemption limit for the total activity of ionization sources was set to
1 GBq 181, Therefore, the usage of low-radiation trittum ion sources with an activity of 300 MBq or less is not
subject to authorization, hence leading to a broad adoption of tritium ion sources in a number of commercially
available systems on the market L7U18I19120]21] Beta particles, which are emitted by the tritium source, initiate a
gas-phase reaction cascade of the drift gas (nitrogen or air), resulting in predominant proton-water clusters H*
[H,0],,, which are commonly referred to as ‘reactant ions’ [22. The number of water molecules (n) depends on the
gas temperature and the moisture content of the gas atmosphere 4. Depending on the proton affinity, molecules
entering the ionization region react with the reactant ions to protonated monomers MH*[H,0],,.x, Which leads to an
intensity decrease of the reactant ion peak (RIP). At higher analyte concentrations, proton-bound dimers M,H*
[H-0],-x are formed by the attachment of additional analyte molecules. When the concentration further increases,
the formation of higher molecular cluster ions, such as trimers or tetramers, is possible; however, due to their low
stability and short lifetime, higher molecular cluster ions are rarely observed 23!, In general, nonlinear behaviors
are observed for the ratio of the RIP and the distribution between the protonated monomer and the proton-bound

dimer [28l24] The principles of a drift-time IMS including a tritium ionization source are shown in Figure 1 .
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Figure 1. Setup of a drift-time IMS with a tritium (H-3) ionization source, adopted from 22 with permission
(ID5138730886281).

After ionization, the analyte ions are transferred into the drift region through a gating mechanism based on a
charged electrode. For precise control of the ion pulse width admitted into the drift tube, complex gating systems,
such as Bradbury-Nielsen or field switching shutters are employed 3. In the drift tube, ions are accelerated
towards the detector, a Faraday plate, and subsequently separated by their drift time (or mobility) in an electrical
field at ambient pressure. The ions are slowed down by collision with counter flowing drift gas molecules in the
collision cross section (CCS). The equilibrium of the acceleration by an electric field and deceleration by collision
with the drift gas molecules results in ions to move with a constant velocity towards the detector. Depending on
mass, charge and spatial structure, the ions are separated in the drift tube and reach the detector at different drift

times [&l. The drift time may be used to calculate the reduced ion mobility K, via the Mason-Schamb equation 2!,

To avoid clustering in the ionization or drift region, IMS devices are commonly hyphenated to chromatographic
techniques, such as liquid chromatography (LC) or gas chromatography (GC). Column separation coupled to drift
time IMS separates analytes into two orthogonal “features”, the retention time through chromatography and
following, drift time or mobility through IMS, resulting in a highly resolved, two dimensional (2D) GC-IMS spectrum
(20I14] \While hyphenation to LC is still more challenging, mainly due to the high dependence on sample preparation
as a critical step for the data quality 28], GC-based IMS is typically easier to realize, mainly due to fact that the
mobile phase is nearly inert. In particular, headspace (HS)-based techniques allow for the analysis of nearly
untreated samples, which reduces the need for time-consuming sample pre-treatment steps £ and furthermore,

minimizes formation of handling-associated artifacts.

| 3. Targeted screening approaches and GC-IMS

To address the large amount of data obtained by GC-IMS measurements, specific markers may be selected prior
to data analysis. As prior knowledge is often included in the selection process, this strategy is commonly referred to
as targeted screening. The markers used for targeted screening can be either handpicked or mathematically

determined 22281 One-way analysis of variance (ANOVA), using for example a Tukey’s test, is often applied to
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identify volatile compounds which exhibit significant differences, commonly quantified at a 5% significance level (p
< 0.05) (291 various other methods, such as Gabor filters, local binary pattern, Haar, and histograms of oriented
gradients (HOG), have been proposed for feature extraction B4B Chen and coworkers applied MPCA and HOG
for feature extraction and data reduction of multicapillary column (MCC)-IMS data, with subsequent canonical
discriminant analysis for the generation of nonlinear boundaries, for the successful quantification of the adulteration
degree of canola oil. A predictive accuracy of more than 95.2% was reported for a partial least squares model,
which was obtained using a train—test split of 70 to 30 [22l. Using targeted approaches and applying principal
component analysis together with a k-nearest neighbors classifier (PCA-kNN), the same authors reported a
successful classification of rapeseed oils according to their quality (grade 1-4) and a successful determination of
vegetable oil according to its botanical origin (sesame oil, canola oil, and camellia oil). For the classification of the
canola oil quality, the colorized differences method was applied to capillary column (CC)-IMS data, resulting in 34
peaks of interest and a predictive accuracy of 100% [28l. Furthermore, Otsu’s method and colorized differences
method was used for automatic peak detection, resulting in 88 peaks of interest and a predictive accuracy of 98.3%
for the classification of vegetable oil using MCC-IMS data 4. The advantage of preselecting markers with
significant differences is the simultaneous reduction of noise in the data, which, however, includes the risk of
overlooking valuable information. Still, a targeted approach might be preferable in cases where the identification

and quantitation of few marker compounds is sufficient to characterize a product in its quality or state.

| 4. NTS approaches and GC-IMS

Targeted screening approaches, which focus on the detection, identification and quantitation of a particular
compound or class of compounds, may lack the ability to detect anomalies in form of new or unknown compounds.
However, new scientific findings continuously identify potential hazardous or allergenic compounds 32, Therefore,
for systematic monitoring of product quality, it is therefore desirable to develop analytical methods capable of
highlighting unknown or non-targeted compounds from the complex sample matrices. This approach, also referred

to as NTS, requires comprehensive extraction and analysis of potential compounds of interest.

NTS aims to identify the compounds of unknown molecular composition. Similar to targeted approaches, the
workflow for NTS generally consists of sample preparation, instrumental analysis, and post acquisition data
processing 28, A detailed overview about the NTS-Workflow using GC-IMS is described by Capitain and Weller
(2021) B7. The first step, data acquisition, involves sample preparation and subsequent extraction and separation
of VOCs. Since little or no a priori knowledge of the chemical structures and behavior of compounds is required,
NTS approaches benefit from gentle sample preparation, robust instrumental analysis, and standardized data
processing. The collected data are then preprocessed and analyzed in the data-processing step. Since no pre-
existing knowledge is used, the entire spectral fingerprint obtained by HS-GC-IMS analysis is subject to data
analysis and classification or quantification models being built using machine learning tools. Exploratory methods,
such as principal component analysis (PCA) are often used for data reduction and pattern recognition B8l The
information extracted from a data matrix is explained by principal components (PCs), which are orthogonal (i.e.

mathematically independent) to each other. Since PCA models are predicted without labels or validation by test
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data, they are generally considered unsupervised. Unsupervised statistical methods are exploratory methods that
can be used to study data structures and search for clusters of samples 3. Hierarchical cluster analysis (HCA) of
PCA models in a tree-like diagram (dendrogram) is, e.g. used for the visualization of multivariate association and
sample similarities 2%, An extension of PCA for processing three-dimensional (3D) data is provided by multivay
principal component analysis (MPCA) 1 which has been applied for the feature extraction of GC-IMS matrices,

without prior transformation of the 2D data 22!,

Compared to unsupervised techniques, which provide predictions without labels or target variables, supervised
technigues aim to build models able to predict target variables. In supervised learning, several data points or
samples are described using predictor variables or features and target variables. For classification tasks, the
scores obtained by the unsupervised exploratory analysis are combined with subsequent supervised pattern
recognition techniques to distinguish samples according to defined categories. Among PCA-based qualitative
methods are linear discriminant analysis (LDA) and k-nearest neighbors (kNN). Whereas PCA-LDA maximizes the
interclass variance, kNN assigns the category most common among the k-nearest neighbors. The downside of
using PCA-based methods is that the correlation between dependent and independent variables are not
considered during PCA analysis, which can result in the loss of information included in higher PCs 381, An
alternative is provided by partial least squares (PLS), where the scores are calculated by considering the

relationship between the independent and dependent variables.

For quantification tasks, partial least squares regression (PLSR) has become the standard method used in
chemometrics, including the fields of sensorial analysis in food chemistry 2842 P| SR is used to describe the
relationship between two data matrices, X (experimental data) and Y (actual concentrations), which are
decomposed into X = TPT + E und Y = UQT + F, by finding the maximum covariance and linear relationship
between the score matrices T and U. One limitation to PLSR is the typically lower performance on nonlinear and
heteroscedastic data, as is partially the case for IMS data. Several studies have analyzed nonlinear IMS data [El[23],
Nonlinear relationships between the matrices T and U can be described by kernel PLSR (also known as nonlinear

PLSR), where the data are transformed into higher-dimensional spaces using the kernel trick 431,

In the final step of NTS, model interpretation, key compounds are identified, which can be extracted through back
projection of loadings. Due to the complexity of biological matrices, the substance identification with GC-IMS data
alone can be challenging, which is why stand-alone IMS are rarely used to investigate the sample composition.
Complementary techniques, such as GC-MS [24] or IH NMR 8] are often used to provide further insight into
sample composition and to identify decisive marker substances 8. Lastly, the model coherency is evaluated and

finally applied for benchtop profiling.

A plethora of studies have shown the potential of HS-GC-IMS in combination with NTS for monitoring food quality
or confirmation of geographical or botanical origin, despite the complexity of the samples. For example, HS-GC-
IMS with NTS has been widely applied for the classification of olive oil between high-priced type 1 extra-virgin olive
oil (EVOO), medium-priced type 2 virgin olive oil (VOO or OO), and non-edible type 3 olive oil, also known as
pomace olive oil (POO) or lampante (virgin) olive oil (L(V)00) L229[47]148] Fyrthermore, HS-GC-IMS with NTS was
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successfully used for reliable classification of geographical origins for both olive oil (EVOO) 21495 gand wine B4,
Moreover, HS-GC-IMS with NTS was applied for the classification of honey according to botanical origin 2251152
as well as for the detection and quantification of honey adulterated with sugar cane or corn syrups [B3I34, Recently,
HS-GC-IMS with NTS has been applied to assess the freshness of food 22! and for the detection of mold formation

on milled rice 8, peanut kernels 54, and wheat kernels 58,

| 5. Comparison of targeted strategies and NTS

NTS approaches (spectral fingerprinting) have been directly compared to targeted approaches (extraction of
specific markers) for the analysis of IMS data. Garrido-Delgado and coworkers compared targeted and NTS
approaches for the classification of olive oil into EVOO, OO, and LVOO, using data obtained by MCC coupled to
IMS [“1 A PCA-LDA model was used for data reduction and data clustering, followed by kNN (k = 3) for
classification, obtaining a prediction percentage of 79% for the targeted strategy and 85% for NTS strategy. For the
classification of olive oil harvested in 2014-15, Contreras and coworkers obtained a prediction percentage of
56.9% for the targeted strategy and 67.8% for the NTS strategy 29. An improved prediction success was achieved
for models built with olive oil samples from 2014-15 and 2015-16, obtaining 74.3% for the targeted strategy and
79.4% for the NTS, hence suggesting superior abilities of the NTS approach versus the selection of specific
markers. By contrast, the authors also reported that a targeted model built with samples from the years 2014-15
(prediction success of 51.6%) was superior to the NTS approach (prediction success of 36.0%) when applied to the
years 2015-16. Both models built with the data from the years 2014-15 show weak prediction abilities for the
prediction of samples from the following year, revealing some fundamental challenges in data science: the
predictive ability of a model is highly dependent on the number of samples as well as on the sample diversity. Both

approaches include the risk of overfitting to a specific problem 29,

Arroyo-Manzanares and coworkers likewise obtained superior classification accuracy using HS-GC-IMS for a
model based on a targeted marker selection (100%) compared to a model based on the whole spectral fingerprint
(90%) for the distinction between dry-cured Iberian ham from pigs fattened on acorns and pasture or on feed
B9 However, the model based on marker selection was built using orthogonal PLS-DA, while kNN (k = 3) and
PCA-LDA were used for the model based on spectral fingerprints; hence, the differences in the predictability of the
models may result from the use of different mathematical tools and do not provide inferences about targeted and
non-targeted approaches. Gu and coworkers by contrast obtained better classification results with the NTS versus
a targeted approach for distinguishing between fungal infections of wheat kernels, as well as for the quantification
of fungal colony counts 28, In conclusion, NTS and targeted screening approaches are both effective tools for data

analysis, with different challenges and application areas.
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