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Air pollution is becoming an increasingly important global issue. Toxic gases such as ammonia, nitrogen dioxide, and

volatile organic compounds (VOCs) like phenol are very common air pollutants. To date, various sensing methods have

been proposed to detect these toxic gases. Researchers are trying their best to build sensors with the lowest detection

limit, the highest sensitivity, and the best selectivity. As a 2D material, graphene is very sensitive to many gases and so

can be used for gas sensors. Recent studies have shown that graphene with a 3D structure can increase the gas

sensitivity of the sensors. The limit of detection (LOD) of the sensors can be upgraded from ppm level to several ppb

level.
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1. Introduction

There is a huge demand for the development of simple and reliable gas sensors . In many fields, such as agriculture,

medical diagnosis, and industrial waste, especially in environmental monitoring, it is necessary to detect NO  (especially

NO ), ammonia (NH ), and volatile organic compounds (VOCs), because of their possible toxicity and related risks to the

ecosystem . In many countries, air pollution is a major environmental problem caused by rapid industrialization. A

large amount of NO  is emitted into the environment every year due to the industrial combustions and automobile

emissions . Therefore, the detection of NO  has aroused widespread concerns, because it is harmful to the plants and

respiratory systems of people and animals . Additionally, NO  can cause acid rain and photochemical smog .

Therefore, the United States Environmental Protection Agency (EPA) defines NO  as a typical air pollutant, and the

exposure limit is only 53 ppb . Ammonia (NH ) is also a common dangerous air pollutant, which is produced by the

industrial process, agricultural production, and manufacturing process . Specifically, any overexposure to the high

concentrations of NH  (>30 ppm, 10 min) can irritate the human eye, skin, and respiratory system . VOCs are the

hydrocarbons that exist as gases or vapor at room temperature, which can be emitted from numerous products and

activities, e.g., detergents, paints, solvents, tools, clothes, toys, cleaning, and cooking . Aldehyde, aromatic, aliphatic,

halogenated, and terpenoid compounds are the VOCs commonly detected in commercial buildings . Toxic VOCs

that have been previously detected in air by any type of sensors include formaldehyde, acetaldehyde, benzene, toluene,

xylenes, phenol, pyridine, acetone, acetic anhydride, carbon disulfide, dihydroxybenzene, and so on . For

example, phenol is a toxic VOC occurring both naturally but also from industrial processes, which can be rapidly absorbed

through the skin and cause skin and eye burns upon contact . It is considered as a serious pollutant because of the

toxicity and persistence in the environment. The short-term exposure limit of phenol is 10 ppm, 60 min . Because of the

serious environmental pollution, phenol monitoring becomes an urgent problem. Therefore, with the monitoring

development of air pollution, the demand for gas sensors will increase rapidly in the future.

As a 2D material, graphene has many advantages, such as large conjugated structure, high specific surface area, high

conductivity, easy to be synthesized, sensitive to the gas molecules, and so on. It has been proven to be a promising

high-performance gas detection material . Graphene surface can easily absorb some molecules, such as NO , NH ,

CO , and so on. Moreover, the conductivity of graphene will change after adsorption of target gas molecules. The

concentration of target gas in the environment can be detected by monitoring the change of conductivity. There have been

many reports on the application of graphene in gas sensors, including pure graphene  and graphene

composite materials . There are many factors affecting graphene-based sensors, including: synthetic

method , chemical structure , interlaminar structure , testing environment , and surface

properties . Due to the π-π accumulation and Van Der Waals force binding between graphene, the 2D

graphene nanocomposites tend to agglomerate, resulting in the reduction of specific surface area . In order to

make full use of the characteristics of graphene, 2D graphene is usually assembled into a three-dimensional (3D)

framework state by a series of methods. In contrast, due to the combination of 3D porous structure and the inherent

characteristics of graphene, 3D graphene provides more space and larger surface area to transport and store electrons.
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3D graphene has good conductivity, large specific surface area, and versatile gas adsorption sites. Furthermore, the

defects and edge positions on the 3D porous graphene play an important role in promoting gas adsorption . In recent

years, compared with 2D graphene structures, 3D porous graphene structures such as graphene hydrogels, graphene

aerogels, and graphene foams have been used as high-performance gas sensors . Although 3D graphene has broad

prospects in the field of gas sensors with the super high sensitivity, the selectivity is not satisfactory. Different gas

molecules may adsorb on the same 3D graphene sheets and lead to the total change of the resistance . It is difficult

to quantitatively distinguish one target gas from a gas mixture. To improve the selectivity, defect engineering is generally

needed to modulate graphene .

Several reviews have presented the main development of graphene-based gas sensors. For example, in 2015, Meng et

al.  reviewed the graphene-based hybrids for chemi-resistive gas sensors. They focused on the sensing principles and

synthesis processes of the graphene-based hybrids with noble metals, metal oxides, and conducting polymers. In 2018,

Xia et al.  summarized the 3D structure graphene/metal oxide hybrids for gas sensors. They concluded a variety of

logical strategies to design the 3D nanohybrids of RGO and MOx. In 2020, Ilnicka et al.  summarized the graphene-

based hydrogen gas sensors, a special case of gas sensitivity to H . However, the above reviews did not reflect the whole

progress of graphene gas sensors, especially for the air pollution monitoring applications. This paper aims to summarize

the recent progress of the gas sensors based on 3D graphene frameworks in the detection of air pollutants.

2. Synthesis of 3D Graphene Frameworks

Graphene oxide (GO) and reduced graphene oxide (RGO) have a 2D conjugated structure with single-atom thickness and

residual oxygen-containing groups, which can be regarded as 2D conjugated macromolecules, structurally. They have rich

chemical activities, which are helpful for 3D self-assembly through a series of chemical modification methods to regulate

the interaction between the layers .

Graphene hydrogel is one of the major 3D assemblies. Chemically modified graphene (CMG) hydrogels prepared from

GO or RGO can be used for large-scale production. As shown in Figure 1, RGO hydrogels (RGOHs) can be obtained by

the following methods:

Figure 1. Synthesis methods of 3D graphene frameworks.

Hydrothermal reduction, which is simple, fast, and free of impurities. At present, the commonly used hydrothermal

method is to prepare RGO dispersion by hydrothermal treatment at 180 °C .

Chemical reduction, which is beneficial for large-scale production, and various reducing agents can be selected 
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Electrochemical reduction . The hydrogel prepared by this method is applied to the electrode surface and can

be directly applied to the electrode materials of electrochemical instruments.

Vacuum filtration. A simple vacuum filtration method was developed to prepare RGO hydrogels with high conductivity,

anisotropy, and responsive stimuli .

In addition to the 3D self-assembly of graphene in a water system, the assembly of the graphene in an organic system

can also be achieved by thermal solvent reduction .

Graphene aerogel composites are usually prepared by supercritical drying or freeze-drying of hydrogel precursors .

For example, highly compressible RGO aerogels can be obtained by freeze-drying and microwave treatment. Directional

freezing is a well-known processing technology of porous materials. This technology can also be used for the preparation

of graphene aerogels . Moreover, the controllable heat treatment technology can also reduce GO to RGO and restore

conductivity. The regulation of the chemical structure of GO can adjust the morphology and elasticity of aerogels, for

example, the oxygen functional groups in GO have a significant effect on the morphology and elasticity of the gels .
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