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The genome-editing tool, CRISPR-Cas9, reveals the functional features of several parts of the plant genome.

Current developments in CRISPR, such as de novo meristem induction genome-engineering in dicots and

temperature-tolerant LbCas12a/CRISPR, enable greater DNA insertion precision. 

plant stress  abiotic stress  biotic stress  omics  CRISPR-Cas9  crop stress tolerance

1. Introduction

In cells, CRISPR-Cas9 is a cheap, easy, fast, and effective system for gene knockout . For effective genome

engineering, CRISPR-Cas9 has been used in animals, plants, and bacteria . Furthermore, CRISPR-Cas9

has been used for high-throughput screening of genes, gene knockout, chromosomal loci live-cell labeling,

endogenous gene expression, and single-stranded RNA (ssRNA) edition. The application of CRISPR-Cas9 for

studying the function of a gene has generated disease models. However, several queries and challenges need to

be addressed. CRISPR-Cas9 will likely enhance our comprehension of disease activity and its management. For

targeted genome engineering, detecting programmable nucleases that produce cuts in double-strands has radically

changed molecular biology; ZFNs pioneered this success, with TALEN extending the genome modifying capacity .

Globally, CRISPR-Cas9 received recognition from researchers for its visible benefits over TALEN and ZFN , being

its (1) ease of designing target, (2) ability to create mutations by inserting the guided RNA and Cas9 protein, and

(3) multiplexing ability to target several genes at one time . Figure 1 summarizes the principles of CRISPR-

Cas9.
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Figure 1. Concept of CRISPR-Cas9-mediated gene elimination. Single guide RNA (sgRNA) containing crRNA and

tracrRNA fixes to Cas9 protein. This complex will break at a specific target of the double-stranded DNA molecule.

The nonhomologous end-joining pathway (NHEJ) will repair the cleaved location.

2. CRISPR Technology

Due to its robust success, CRISPR-Cas9 is becoming a potential tool for genetically enhancing desirable crop

traits, i.e., disease resistance, nutrient content, adaptation to multiple stresses, plant architecture, and yield. In

some cases, a specific trait can be improved by negative regulatory gene knockout. Rice grain weight improved

with gene modification of some QTL . Maize grain yield under drought increased with genome engineering of the

ARGOS8 locus . In woody plants, CRISPR-Cas9 produced mutants in the first transgenic generation; this is

significant as woody plant breeding is difficult due to their long lifespan . Another study knocked out

the OsGAN1 gene in rice and verified that it regulates root length and plant height . Similarly, OsABCG26 gene

knockout verified that this gene regulates pollen exine and anther cuticle, and OsTCD10 had a substantial role in

chloroplasts of cold-stressed rice . 

3. CRISPR-Cas9 Genome Editing to Biotic Stress Tolerance

Genome editing by CRISPR-Cas9 has been used effectively in several crops, including cotton, maize, rice, and

wheat. However, most genome engineering studies have targeted biotic stresses, such as diseases. In wheat, the

CRISPR-Cas9 method was used successfully to knock out all three EDR1 homologs to create plants (Taedr1) with

increased tolerance to powdery mildew . In Arabidopsis, the knockout of susceptible gene EDR1 increased

resistance to powdery mildew . Recessive resistance genes, eIF (eukaryotic translation initiation factor), have

been detected in several dissimilar hosts, with eIF (iso) 4E and eIF4E genes used with CRISPR-Cas9 to form

virus-resistant plants in Arabidopsis and cucumber, respectively . CsLOB1 is a susceptible gene of the citrus

canker (causative agent; Xanthomonascitri); CRISPR-Cas9 was used to edit this gene to develop resistant

grapefruit plants . Additionally, a negative resistance function MLO gene, responsible for powdery mildew

susceptibility, was mutated successfully by Cas9 knockouts to enhance resistance against powdery mildew in

tomato and wheat . The application of CRISPR-Cas9 as an antivirus tool cleaved beet severe curly top

virus, which decreased the viral infection . The rice tungro spherical virus (RTSV), linked to the negatively

controlled susceptible eIF4G gene, was eliminated using CRISPR-Cas9 to develop resistant rice varieties . From

CRISPR-Cas9, the loss of function VvWRKY52 gene produced resistance against Botrytis cinerea in grape (Vitis

vinifera) . Furthermore, CRISPR-Cas9 has been used to interrupt multiple virus genomes, including CLCuK V,

TYLCSV, and TYLCV . For cucumber mosaic virus and tobacco mosaic virus, a technology to modify RNA virus

genomes has been advanced from sgRNA and FnCas9. Hence, molecular immunity to RNA viruses was mediated

by sgRNA/FnCas9 expression in Arabidopsis and tobacco . CRISPR-Cas9 successfully targeted OsERF922

against blast fungus resistance in rice . Plant ethylene-responsive factors (ERFs) can control tolerance against

various stresses because they are involved in the ethylene (cytokinin) pathway . When taken together, these

reports deliver robust indications that CRISPR-Cas9 can enhance biotic stress resistance in plants (Table 2).
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Table 2. CRISPR-Cas9 application for crop improvement.

Species Traits Target
Genes Reference

Abiotic
stresses    

Rice
Improved resistance to arsenic

stress
ARM1

 Depletion of Cd into grain LCT1

 Depletion of Cd into grain Nramp5

 Drought tolerance SAPK2

Tomato Drought tolerance SIMAPK3

Maize Drought tolerance ARGOS8

Arabidopsis Cold tolerance
CBF1
CBF2

Biotic
stresses    

Arabidopsis Resistance to turnip mosaic
virus

eIF (iso)4E

Wheat
Improved resistance to powdery

mildew
TaMLO

 
Improved resistance to powdery

mildew
EDR1

Rice
Increased resistance to blast

fungus
OsERF922

 
Increased resistance to tungro

spherical virus
eIF4G

Barley
Improved resistance to fungal

pathogens
MORC1

Orange
Improved resistance to citrus

canker
CsLOB1

Tomato
Improved resistance to powdery

mildew
Mlo1

 Anthocyanin biosynthesis ANT1
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Species Traits Target
Genes Reference

Grape
Improved resistance to Botrytis

cinerea WRKY52

Cucumber Virus resistance eIF4E
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