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The genome-editing tool, CRISPR-Cas9, reveals the functional features of several parts of the plant genome.
Current developments in CRISPR, such as de novo meristem induction genome-engineering in dicots and

temperature-tolerant LbCas12a/CRISPR, enable greater DNA insertion precision.
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| 1. Introduction

In cells, CRISPR-Cas9 is a cheap, easy, fast, and effective system for gene knockoutll. For effective genome
engineering, CRISPR-Cas9 has been used in animals, plants, and bacteria2BI4l3! Furthermore, CRISPR-Cas9
has been used for high-throughput screening of genes, gene knockout, chromosomal loci live-cell labeling,
endogenous gene expression, and single-stranded RNA (ssRNA) edition. The application of CRISPR-Cas9 for
studying the function of a gene has generated disease models. However, several queries and challenges need to
be addressed. CRISPR-Cas9 will likely enhance our comprehension of disease activity and its management. For
targeted genome engineering, detecting programmable nucleases that produce cuts in double-strands has radically
changed molecular biology; ZFNs pioneered this success, with TALEN extending the genome modifying capacity!&.
Globally, CRISPR-Cas9 received recognition from researchers for its visible benefits over TALEN and ZFN, being
its (1) ease of designing target, (2) ability to create mutations by inserting the guided RNA and Cas9 protein, and
(3) multiplexing ability to target several genes at one time B, Figure 1 summarizes the principles of CRISPR-
Cas9.
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Figure 1. Concept of CRISPR-Cas9-mediated gene elimination. Single guide RNA (sgRNA) containing crRNA and
tracrRNA fixes to Cas9 protein. This complex will break at a specific target of the double-stranded DNA molecule.

The nonhomologous end-joining pathway (NHEJ) will repair the cleaved location.

| 2. CRISPR Technology

Due to its robust success, CRISPR-Cas9 is becoming a potential tool for genetically enhancing desirable crop
traits, i.e., disease resistance, nutrient content, adaptation to multiple stresses, plant architecture, and yield. In
some cases, a specific trait can be improved by negative regulatory gene knockout. Rice grain weight improved
with gene modification of some QTLIY. Maize grain yield under drought increased with genome engineering of the
ARGOSS locuslll, In woody plants, CRISPR-Cas9 produced mutants in the first transgenic generation; this is
significant as woody plant breeding is difficult due to their long lifespanl2l18l  Another study knocked out
the OsGANI gene in rice and verified that it regulates root length and plant height4, Similarly, OSABCG26 gene
knockout verified that this gene regulates pollen exine and anther cuticle, and OsTCD10 had a substantial role in

chloroplasts of cold-stressed ricel23I[16],

| 3. CRISPR-Cas9 Genome Editing to Biotic Stress Tolerance

Genome editing by CRISPR-Cas9 has been used effectively in several crops, including cotton, maize, rice, and
wheat. However, most genome engineering studies have targeted biotic stresses, such as diseases. In wheat, the
CRISPR-Cas9 method was used successfully to knock out all three EDR1 homologs to create plants (Taedrl) with
increased tolerance to powdery mildew 2. In Arabidopsis, the knockout of susceptible gene EDR1 increased
resistance to powdery mildewll&. Recessive resistance genes, elF (eukaryotic translation initiation factor), have
been detected in several dissimilar hosts, with elF (iso) 4E and elF4E genes used with CRISPR-Cas9 to form
virus-resistant plants in Arabidopsis and cucumber, respectivelyl2229. Csl OB1 is a susceptible gene of the citrus
canker (causative agent; Xanthomonascitri); CRISPR-Cas9 was used to edit this gene to develop resistant
grapefruit plants [21[22 Additionally, a negative resistance function MLO gene, responsible for powdery mildew
susceptibility, was mutated successfully by Cas9 knockouts to enhance resistance against powdery mildew in
tomato and wheat 23124125 The application of CRISPR-Cas9 as an antivirus tool cleaved beet severe curly top
virus, which decreased the viral infection2827. The rice tungro spherical virus (RTSV), linked to the negatively
controlled susceptible elF4G gene, was eliminated using CRISPR-Cas9 to develop resistant rice varieties28l. From
CRISPR-Cas9, the loss of function VWWRKY52 gene produced resistance against Botrytis cinerea in grape (Vitis
vinifera)22. Furthermore, CRISPR-Cas9 has been used to interrupt multiple virus genomes, including CLCuK,V,
TYLCSV, and TYLCVEY. For cucumber mosaic virus and tobacco mosaic virus, a technology to modify RNA virus
genomes has been advanced from sgRNA and FnCas9. Hence, molecular immunity to RNA viruses was mediated
by sgRNA/FnCas9 expression in Arabidopsis and tobaccolBl, CRISPR-Cas9 successfully targeted OSERF922
against blast fungus resistance in rice22. Plant ethylene-responsive factors (ERFs) can control tolerance against
various stresses because they are involved in the ethylene (cytokinin) pathway23l. When taken together, these

reports deliver robust indications that CRISPR-Cas9 can enhance biotic stress resistance in plants (Table 2).
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Species

Abiotic
stresses

Rice

Tomato

Maize

Arabidopsis

Biotic
stresses

Arabidopsis

Wheat

Rice

Barley

Orange

Tomato

Table 2. CRISPR-Cas9 application for crop improvement.

Traits

Improved resistance to arsenic
stress

Depletion of Cd into grain
Depletion of Cd into grain
Drought tolerance
Drought tolerance

Drought tolerance

Cold tolerance

Resistance to turnip mosaic
virus

Improved resistance to powdery
mildew

Improved resistance to powdery
mildew

Increased resistance to blast
fungus

Increased resistance to tungro
spherical virus

Improved resistance to fungal
pathogens

Improved resistance to citrus
canker

Improved resistance to powdery
mildew

Anthocyanin biosynthesis

Target
Genes

ARM1

LCT1
Nramp5
SAPK2
SIMAPK3
ARGOS8

CBF1
CBF2

elF (iso)4E

TaMLO

EDRI1

OsERF922

elF4G

MORC1

CsLOB1

Milo1

ANT1
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Target

Species Traits Reference
Genes
Grape Improved res!stance to Botrytis WRKY52 [29]
cinerea
Cucumber Virus resistance elF4E [19]
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