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Self-supervised learning has gained popularity because of its ability to avoid the cost of annotating large-scale datasets. It

is capable of adopting self-defined pseudolabels as supervision and use the learned representations for several

downstream tasks. 
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1. Introduction

The advancements in deep learning have elevated the field to become a core component in most intelligent systems. The

ability to learn rich patterns from the abundance of data available today has made the use of deep neural networks

(DNNs) a compelling approach in the majority of computer vision (CV) tasks such as image classification, object

detection, image segmentation, and activity recognition, as well as natural language processing (NLP) tasks such as

sentence classification, language models, machine translation, etc. However, the supervised approach to learning

features from labeled data has almost reached its saturation due to intense labor required in manually annotating millions

of data samples. This is because most of the modern computer vision systems (that are supervised) try to learn some

form of image representations by finding a pattern between the data points and their respective annotations in large

datasets. Works such as GRAD-CAM  have proposed techniques that provide visual explanations for decisions made by

a model to make them more transparent and explainable.

Traditional supervised learning approaches rely heavily on the amount of annotated training data available. Even though

there is a plethora of data available, the lack of annotations has pushed researchers to find alternative approaches that

can leverage them. This is where self-supervised methods play a vital role in fueling the progress of deep learning without

the need for expensive annotations and learn feature representations where data provide supervision.

Supervised learning not only depends on expensive annotations, but also suffers from issues such as generalization error,

spurious correlations, and adversarial attacks . Recently, self-supervised learning methods have integrated both

generative and contrastive approaches that have been able to utilize unlabeled data to learn the underlying

representations. A popular approach has been to propose various pretext tasks that help in learning features using

pseudolabels. Tasks such as image-inpainting, colorizing grayscale images, jigsaw puzzles, super-resolution, video frame

prediction, audio-visual correspondence, etc. have proven to be effective for learning good representations.

Generative models gained their popularity after the introduction of Generative Adversarial Networks (GANs)  in 2014.

The work later became the foundation for many successful architectures such as CycleGAN , StyleGAN , PixelRNN ,

Text2Image , DiscoGAN , etc. These methods inspired more researchers to switch to training deep learning models

with unlabeled data in an self-supervised setup. Despite their success, researchers started realizing some of the

complications in GAN-based approaches. They are harder to train because of two main reasons: (a) non-convergence—

the model parameters oscillate a lot and rarely converge, and (b) the discriminator gets too successful that the generator

network fails to create real-like fakes due to which the learning cannot be continued. Furthermore, proper synchronization

is required between the generator and the discriminator that prevents the discriminator converging and the generator

diverging.

Unlike generative models, contrastive learning (CL) is a discriminative approach that aims at grouping similar samples

closer and diverse samples far from each other as shown in Figure 1. To achieve this, a similarity metric is used to

measure how close two embeddings are. Especially, for computer vision tasks, a contrastive loss is evaluated based on

the feature representations of the images extracted from an encoder network. For instance, one sample from the training

dataset is taken and a transformed version of the sample is retrieved by applying appropriate data augmentation

techniques. During training, referring to Figure 2, the augmented version of the original sample is considered as a positive

sample, and the rest of the samples in the batch/dataset (depends on the method being used) are considered negative

[1]

[2]

[3]

[4] [5] [6]

[7] [8]



samples. Next, the model is trained in a way that it learns to differentiate positive samples from the negative ones. The

differentiation is achieved with the help of some pretext task (explained in Section 2). In doing so, the model learns quality

representations of the samples and is used later for transferring knowledge to downstream tasks. This idea is advocated

by an interesting experiment conducted by Epstein  in 2016, where he asked his students to draw a dollar bill with and

without looking at the bill. The results from the experiment show that the brain does not require complete information of a

visual piece to differentiate one object from the other. Instead, only a rough representation of an image is enough to do so.

Figure 1. Basic intuition behind contrastive learning paradigm: push original and augmented images closer and push

original and negative images away.

Figure 2. Contrastive learning pipeline for self-supervised training.

Most of the earlier works in this area combined some form of instance-level classification approach  with

contrastive learning and were successful to some extent. However, recent methods such as SwAV , MoCo , and

SimCLR  with modified approaches have produced results comparable to the state-of-the-art supervised method on

ImageNet  dataset as shown in Figure 3. Similarly, PIRL , Selfie , and the work in  are some papers that reflect

the effectiveness of the pretext tasks being used and how they boost the performance of their models.
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Figure 3. Top-1 classification accuracy of different contrastive learning methods against baseline supervised method on

ImageNet.

2. Contrastive Learning in NLP

Contrastive learning was first introduced by Mikolov et al.  for natural language processing in 2013. The authors

proposed a contrastive learning-based framework by using co-occurring words as semantically similar points and negative

sampling  for learning word embeddings. The negative sampling algorithm differentiates a word from the noise

distribution using logistic regression and helps to simplify the training method. This framework results in huge

improvement in the quality of representations of learned words and phrases in a computationally efficient way. Arora et al.

 proposed a theoretical framework for contrastive learning that learns useful feature representations from unlabeled

data and introduced latent classes to formalize the notion of semantic similarity and performs well on classification tasks

using the learned representations. Its performance is comparable to the state-of-the-art supervised approach on the Wiki-

3029 dataset. Another recent model, CONtrastive Position and Ordering with Negatives Objective(CONPONO) ,

discourses coherence and encodes fine-grained sentence ordering in text and outperforms BERT-Large model despite

having the same number of parameters as BERT-Base.

Contrastive Learning has started gaining popularity on several NLP tasks in recent years. It has shown significant

improvement on NLP downstream tasks such as cross-lingual pretraining , language understanding , and textual

representations learning . INFOXLM , a cross-lingual pretraining model, proposes a cross-lingual pretraining task

based on maximizing the mutual information between two input sequences and learns to differentiate machine translation

of input sequences using contrastive learning. Unlike TLM , this model aims to maximize mutual information between

machine translation pairs in cross-lingual platform and improves the cross-lingual transferability in various downstream

tasks, such as cross-lingual classification and question answering. Table 1 shows the recent contrastive learning methods

on NLP downstream task.

Table 1. Recent contrastive learning methods in NLP along with the datasets they were evaluated on and the respective

downstream tasks.

 

Model Dataset Application
Areas

Distributed
Representations Google

internal

Training with
Skip-gram
model

Contrastive
Unsupervised Wiki-3029

Unsupervised
representation
learning

CONPONO RTE, COPA,
ReCoRD

Discourse fine-
grained
sentence
ordering in text

INFOXLM XNLI and
MLQA

Learning cross-
lingual
representations

CERT GLUE
benchmark

Capturing
sentence-level
semantics

DeCLUTR OpenWebText

Learning
universal
sentence
representations

Most of the popular language models, such as BERT  and GPT , approach pretraining on tokens and therefore may

not capture sentence-level semantics. To address this issue, CERT  that pretrains models on the sentence level using

contrastive learning was proposed. This model works in two steps: (1) creating augmentation of sentences using back-

translation, and (2) predicting whether two augmented versions are from the same sentence or not by fine-tuning a

pretrained language representation model (e.g., BERT and BART). CERT was also evaluated on 11 different natural
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language understanding tasks in the GLUE benchmark where it outperformed BERT on seven tasks. DeCLUTR  is

self-supervised model for learning universal sentence embeddings. This model outperforms InferSent, a popular sentence

encoding method. It has been evaluated based on the quality of sentence embedding on the SentEval benchmark.

3. Discussions and Future Directions

Although empirical results show that contrastive learning has decreased the gap in performance with supervised models,

there is a need for more theoretical analysis to form a solid justification. For instance, a study by Purushwalkam et al.

reveals that approaches like PIRL  and MoCo  fail to capture viewpoint and category instance invariance that are

crucial components for object recognition. Some of these issues are further discussed below.

3.1. Lack of Theoretical Foundation

In an attempt to investigate the generalization ability of the contrastive objective function, the empirical results from Arora

et al.  [77] show that architecture design and sampling techniques also have a profound effect on the performance. Tsai

et al.  provide an information-theoretical framework from a multi-view perspective to understand the properties that

encourage successful self-supervised learning. They demonstrate that self-supervised learned representations can

extract task-relevant information (with a potential loss) and discard task-irrelevant information (with a fixed gap).

Ultimately, these findings propel such methods towards being highly dependent on the pretext task chosen during training.

This affirms the need for more theoretical analysis on different modules in a contrastive pipeline.

3.2. Selection of Data Augmentation and Pretext Tasks

PIRL  emphasizes on methods that produce consistent results irrespective of the pretext task selected, but works like

SimCLR  and MoCo-v2 , and Tian et al.  demonstrate that selecting robust pretext tasks along with suitable data

augmentations can highly boost the quality of the representations. Recently, SwAV  beat other self-supervised methods

by using multiple augmentations. It is difficult to directly compare these methods to choose specific tasks and

transformations that can yield the best results on any dataset.

3.3. Proper Negative Sampling during Training

During training, an original (positive) sample is compared against its negative counterparts that contribute towards a

contrastive loss to train the model. In cases of easy negatives (where the similarity between the original sample and a

negative sample is very low), the contribution towards the contrastive loss is minimal. This limits the ability of the model to

converge quickly. To get more meaningful negative samples, top self-supervised methods either increase the batch sizes

[15] or maintain a very large memory bank . Recently, Kalantidis et al.  proposed a few hard negative mixing

strategies to facilitate faster and better learning. However, this introduces a large number of hyperparameters that are

specific to the training set and are difficult to generalize for other datasets.

3.4. Dataset Biases

In any self-supervised learning task, the data provide supervision. In effect, the representations learned using self-

supervised objectives are influenced by the underlying data. Such biases are difficult to minimize with the increasing size

of the datasets.
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