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Manganese peroxidase (MnP) is an oxidoreductase with ligninolytic activity and is a promising biocatalyst for the

biodegradation of hazardous environmental contaminants, and especially for dye wastewater decolorization.
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1. Introduction

The textile industry produces large quantities of wastewater containing different types of dyes used during the

dyeing process, which cause great harm to the environment . Many dyes and their intermediate metabolites

have been identified as mutagenic, teratogenic, or carcinogenic, and represent serious health threats to living

ecosystems .

At present, the treatment of dye wastewater mainly relies on physical or chemical management techniques,

including chemical reduction, adsorption, ionizing radiation, precipitation, flocculation and flotation, membrane

filtration, electric coagulation, electrochemical destruction, and ion exchange ozonation . These technologies

have obvious shortcomings such as the excessive use of chemicals, sludge production, expensive factory

requirements or high operating expenses, low decolorization efficiencies, and the inability to handle large numbers

of dyes with different structures, so they are not economically suitable for large-scale wastewater decolorization .

The current focus is to reduce toxicity and develop an efficient, economical, and green dye detoxification and

decolorization technology. Compared with physical and chemical methods, biological methods offer beneficial and

effective prospects due to their economical and environmentally friendly advantages, as well as being simple to

use, safe, and efficient, with no secondary pollution . Therefore, biotechnology is considered the best choice to

degrade and remove these pollutants effectively. In the biotechnology field, enzyme biocatalysis is currently the

main research area due to its broad application prospects .

Manganese peroxidases (EC 1.11.1.13; MnPs) are a family of heme-containing glycoproteins belonging to the

oxidoreductase group. It was discovered in Phanerochaete chrysosporium and is also found in many bacteria and

white-rot fungi (WRF) . There are different MnPs in nature with differentiated properties. For example,

long and short MnPs were reported in WRF associated with the presence/absence of the C-terminal tail extension,

and these showed different catalytic and stability properties . According to the residues of the Mn -binding site,

three novel subfamilies of MnP were described in Agaricales including MnP-ESD (Glu/Ser/Asp Mn -oxidation site),
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MnP-DGD (Asp/Gly/Asp Mn -oxidation site), and MnP-DED (Asp/Glu/Asp Mn -oxidation site) . However, the

Mn -binding site is not the unique feature of MnPs, because versatile peroxidases (VPs), which evolved directly

from MnPs, also possess such a site and can oxidize Mn  to Mn  .

For enzyme applications, MnPs can catalyze the peroxide-dependent degradation of a variety of toxic dye

pollutants, phenolic compounds, antibiotics, and polycyclic aromatic hydrocarbons, so are promising biocatalysts

for hazardous environmental contaminants biodegradation . Moreover, the use of MnPs is suitable for dye

wastewater decolorization as the process is simple and the enzyme can be recycled, thus reducing operating costs

.

2. The Crystal Structure of MnPs

The crystal structure of an enzyme provides information on the catalytic mechanism and for potential in-depth

design and transformation, and for realizing the green biotechnological use of enzymes .

The heme conformation of MnP is similar to that of lignin peroxidase (LiP) and is evolutionarily conserved . In its

resting-state form, MnP is a strongly helical protein containing a Fe  penta-coordinated structure with the

porphyrin ring of the heme cofactor and a proximal histidine, with the sixth coordination position open for H O  .

To date, several crystal structures of MnP from different sources have been reported, and the highest-resolution

crystal structures (~0.93Å) of MnP complexed with Mn  (Mn-MnP) are shown in Figure 1 . The conserved Ca

ions are important for the stability of the protein ; these are indicated as gold yellow spheres and the position of

the Mn  substrate is shown in violet. The active site is composed of three highly conserved amino acids (Glu35,

Glu39, and Asp179) and one heme propionate. The Mn  substrate binds in the center of the active site, and the

heme propionate (HEM) is located in the internal hydrophobic cavity of the enzyme. The spatial structure of HEM is

further stabilized by four hydrogen bonds (green dashed line), two electrostatic interactions (orange dashed line),

and some other weak interactions. The catalytic site of heme peroxidases is strongly conserved, with only minor

variations occurring in the replacement of Phe with Trp in several enzymes such as ascorbate peroxidase and

cytochrome c. The Asp–His pair (242 and 173, respectively) is also conserved.
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Figure 1. The overall structure (A), active site structure (B,C), and interaction mode (D) of Mn–MnP refined at 0.93

Å resolution . PDB ID: 3M5Q.

3. MnP Catalysis

At the beginning of the catalytic cycle, H O  or organic peroxide binds to the enzyme in resting state in ferric (Fe )

form (Figure 2). This process releases one molecule of H O and forms MnP–compound I (Fe -oxo-porphyrin

radical complex), with two oxidation equivalents. This oxidizes Mn  to Mn , forming MnP–compound II (Fe -oxo-

porphyrin complex). Immediately afterwards, the MnP–compound II combines with Mn  in a similar manner to

generate Mn , releasing one molecule of H O, and is reduced to the original state of ferric MnP, completing the

catalytic cycle .
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Figure 2. The MnP catalytic cycle .

The MnP catalytic cycle resembles that of other lignin and heme peroxidases in the presence of native Fe

enzymes and two reactive intermediates . However, in contrast to other peroxidases, MnP preferentially uses

Mn  as the substrate, converting it to the strong oxidation state of Mn  through a series of redox reactions .

4. Application of Unmodified MnPs in the Decolorization of
Dye Wastewater

Table 1 contains a summary of recent studies on the breakdown and decolorization of textile-derived dye

compounds by microbial MnPs.

Table 1. Recent applications of unmodified MnPs in dye decolorization.
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Source Types of Dyes
Initial Concentration

of Dyes

Removal

Rate

Time

Cost
Reference

Microbial consortium SR Crystal Violet 20 mg/L 63% 6

days
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Source Types of Dyes
Initial Concentration

of Dyes

Removal

Rate

Time

Cost
Reference

Cresol Red 100 mg/L 93%

CBB G250 100 mg/L 96%

Trametes pubescens strain i8

Acid Blue 158

50 μM

95%

24 h

Poly R-478 88%

Remazol Brilliant

Violet 5R
76%

Direct Red 5B 66%

Indigo Carmine 64%

Methyl Green 50%

Cibacet Brilliant Blue

BG
46%

Remazol Brilliant Blue

Reactif
42%

Aspergillus terreus GS28 Direct Blue-1 100 mg/L 98.4% 168 h

Bjerkandera adusta strain CX-

9

Acid Blue 158 50 μM 91% 12 h

Poly R-478 80%

[22]
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Source Types of Dyes
Initial Concentration

of Dyes

Removal

Rate

Time

Cost
Reference

Cibacet Brilliant Blue

BG
77%

Remazol Brilliant

Violet 5R
70%

Trametes sp.48424

Indigo Carmine

100 mg/L

94.6%

18 h

Remazol Brilliant Blue

R
85.0%

Remazol Brilliant

Violet 5R
88.4%

Methyl Green 93.1%

Microbial consortium ZSY Metanil Yellow G 100 mg/L 93.39% 48 h

Microbial Consortium ZW1 Methanil Yellow G 100 mg/L 93.3% 16 h

Trichoderma harzianum Alizarin Blue Black B 0.03% 92.34%
14

days

Phanerochaete

chrysosporium CDBB 686

Congo Red

50 ppm

41.84%

36 hPoly R-478 56.86%

Methyl Green 69.79%
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Source Types of Dyes
Initial Concentration

of Dyes

Removal

Rate

Time

Cost
Reference

Bjerkandera adusta CCBAS

930

Alizarin Blue Black B

0.01%

86.5%
20

days
Acid Blue 129 89.22%

Cerrena unicolor BBP6

Congo Red

100 mg/L

53.9% 12 h

Methyl Orange 77.6% 12 h

Remazol Brilliant Blue

R
81.0% 5 h

Bromophenol Blue 62.2% 12 h

Crystal Violet 80.9% 12 h

Azure Blue 63.1% 24 h

Phanerochaete

chrysosporium
Indigo Carmine 30 mg/L 90.18% 6 h

Trametes versicolor
Dye mixture

(Brilliant Blue FCF

and

Allura Red AC)

100 mg/L

80.45%
14

days

Irpex lacteus 86.04%
19

days

Bjerkandera adusta 82.83%
9

days

[40]
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