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Microcellular injection moulding (MuCell®) is a polymer processing technology that uses a supercritical fluid inert
gas, CO2 or N2, to produce light-weight products. Due to environmental pressures and the requirement of light-
weight parts with good mechanical properties, this technology recently gained significant attention. However, poor

surface appearance and limited mechanical properties still prevent the wide applications of this technique.

mechanical properties microcellular injection moulding MuCell polymer processing

processing parameters surface quality

| 1. Introduction

Most plastics are fossil-based, and there are significant concerns regarding the environmental impact of their use.
However, researchers are making significant progress regarding the development of bio-based polymers that
represent around 1% of the total market (12, Plastic parts can be produced through a wide range of techniques,
such as injection moulding, compression moulding, extrusion, blow-moulding, thermoforming, and reaction-

injection moulding BI4IBIE Among these technologies, injection moulding is the most relevant technique.

An injection moulding system consists of an injection unit, a mould closing unit, an ejection unit, a core pulling unit,
and a cooling unit. The main target of the injection unit is to melt the plastic material and inject it into the mould
cavity. The main injection unit components are the screw inside a screw chamber, heating elements around the
screw chamber, and a hopper that contains the raw material. The screw, heating elements, and screw chamber act
together. They melt the plastic material, decreasing its viscosity and increasing its flowability. The screw moves
forward inside the screw chamber and pushes the molten polymer into the mould cavity, which increases density

and decreases shrinkage. Therefore, the injection moulding cycle can be summarised as follows &I

» Plastic injection;

Holding and packing;

Cooling and solidification;

Mould opening and part ejection.
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Figure 1 shows the average percentage of each phase over the overall injection moulding cycle 29, The total cycle
depends on different factors, of which the part wall thickness is one of the most relevant. Nevertheless, the cooling

stage is always the more time-consuming step, representing more than half of the injection moulding cycle.

W Mould opening and ejection

M Packing

® Filling Figure 1. The cycle
Mould closing and clamping

H Cooling

time of injection moulding (figure adapted from 19]),

An important market for injection moulding parts is the automotive sector. In the European Union (EU), this is a
sector under significant safety and environmental regulations. Restrictions on CO 2 emissions imposed by the EU
led not only to the development of new-energy powered vehicles, such as hybrid and electric vehicles, but also to
the development of more efficient and light-weight gasoline-powered vehicles. Therefore, the automotive industry is
increasingly demanding high-performance and light-weight plastic parts. Thus, injection moulding companies
supplying plastic parts for the automotive sector are facing significant challenges, as current injection moulded

parts must be redesigned, and new injection moulding strategies are required.

Replacing solid injected moulded parts by foamed ones represents an effective way to reduce part weight [11J12][13]
Thermoplastic foaming parts can be produced using two types of blowing agents: chemical and physical blowing
agents (12141151 | the case of chemical blowing agents, the agents are mixed with the polymeric materials in the
hopper and moved into the barrel. When the temperature reaches a certain value, gas such as nitrogen, carbon
dioxide, or carbon monoxide is released, creating an internal microcellular structure 827 The main
disadvantages of using chemical blowing agents are related to uneven bubble formation and difficulties in dealing

with the remaining chemical by-products in the machine 7,

The microcellular injection moulding is a foaming technology that uses a physical blowing agent. MuCell® was the
first commercialised microcellular injection moulding process being also the most known technique 21181,
However, other technologies were recently developed and commercialised such as Optifoam®, ProFoam®,
Ergocell® L3I18I1 and 1Q Foam® 29, All of these technologies are based on the mixture of a gas/supercritical fluid

(SCF) and the melt during the injection moulding process, but involving different mixture methods 13I[18I19]201 |
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the MuCell® process, a specially designed reciprocating screw is used as the SCF dosage element. This screw,
longer than a conventional one, is equipped with a mixing section designed to optimise the SCF-polymer melt. The
Optifoam® process uses a specially designed nozzle as the SCF dosage equipment. In the ProFoam® process, the
gas is put into the hopper straight and dissolves with the melt inside the injection unit, while in the Ergocell®
process, a dynamic mixer is used for mixing SCF with the melt. Finally, in the IQ Foam® process, a two-chambered
unit is set up between the hopper and the screw chamber to make the melt and gas mix at moderate-low pressures
(13J181191120]  Among these technologies, MuCell® has the highest industrial acceptance and is the leading
technology. These technologies, and MuCell® in particular, allow not only to produce light-weight plastic parts but

also to reduce carbon footprint and CO, emissions 24,

| 2. Prospects

MuCell® is a relevant injection moulding technique to create light-weight plastic parts with a microcellular internal
structure. This technique also allows producing parts with improved dimensional stability that enable reducing the
injection pressure and clamping forces (energy savings) and the cycle time 22, The produced parts exhibit lower
shrinkage and warpage than conventional injected moulding parts [22. Contrary to conventional injection moulding,
where shrinkage is reduced by controlling both holding pressure and time, in the case of MuCell®, it is controlled by
the SCF content and injection speed 22, The main limitations are related to the surface quality and deterioration of

mechanical properties.

This injection moulding technique requires a proper control of different processing conditions (shot volume, mould
temperature, gas dosage amount, and injection velocity) to reduce silver marks on the part surface and the
production of plastic parts with different cell sizes distributed in different regions within the part inducing mechanical
properties variations from region to region within the same part. Table 1 summarises the main effects of key
processing conditions on cell morphology (e.g., size and density), skin thickness, weight reduction, and mechanical

properties.

Table 1. The summary of the main effects of processing conditions on cell morphology, skin thickness, weight
reduction, and mechanical properties (GF: glass fibre, PEI: polyetherimide, PPS: poly (phenylene sulfide), TPU:
thermoplastic polyurethane, PA66: polyamide 66, PA6: polyamide-6, PS: polystyrene).
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combined use of temperature and pressure sensors placed in the mould cavity to obtain relevant data for in-line
process monitoring is also highly relevant 22, Collected data can be used to determine in real time the rheological
characteristics of the melt and, through the use of proper control systems and artificial intelligence tools, adjust
processing parameters to optimise the injection process. However, in situ characterisation, also critical for real-time
monitoring and process optimisation, is still a challenge. Tabatabaei et al. ¥Y used a mould with a transparent
window and a high-speed digital camera to investigate cell nucleation and growth. However, the different thermal
conductivity properties of glass and mould steel led to incorrect results. Recently, Zhao et al. (41l used an ultrasonic
method for real-time analysis of cell size, surface roughness, and layer thickness. This technique was also used to
measure clamping forces [#2l. Together with artificial intelligence, the real-time data acquired by ultrasonic methods
could open a new route to adjust on-time processing conditions, contributing to the development of a smart
microcellular injection moulding approach. Nevertheless, better material databases and processing conditions—
morphological development models are still required to allow the optimisation of microcellular injection moulding
through the use of optimisation schemes based on the use of case-based reasoning, expert systems, fuzzy

systems, Taguchi methods, genetic algorithm, or simulated annealing methods.

Numerical simulation based on both Moldex 3D and Moldflow have been reported, aiming to improve the part
properties, mould design, and process optimisation. However, better mathematical models capturing the complex
mechanisms involved in the microcellular injection process are required. Currently, these simulation tools are not
able to accurately simulate the entire injection process due to significant pressure variations, large cooling rates,

complex flow fields, and complex nucleation mechanisms in the presence of fillers and additives. Cell nucleation is
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explored as a rapid tooling strategy for several polymer processing technologies such conventional injection

moulding, reaction injection moulding, and thermoforming, and the concept of hybrid moulds was fully discussed

(441451 However, the use of additive manufacturing to produced advanced moulds for microcellular injection

moulding has not been reported.
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