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Cell and gene therapies have been developing dramatically over the past decade. To face and adapt to the
development of these new therapies, the Food and Drug Administration (FDA) wrote and updated new guidelines
from 2016 and keep updating them. Mesenchymal stem cells (MSCs) are the most used cells for treatment, far
ahead from the induced pluripotent stem cells (iPSCs), based on registered clinical trials at clinicaltrials.gov. They
are widely used because of their differentiation capacity and their anti-inflammatory properties, but some
controversies still require clear answers. Additional studies are needed to determine the dosage, the number, and
the route of injections (location and transplantation method), and if allogenic MSCs are safe compared to
autologous MSC injection, including their long-term effect. In this review, we summarized the research our

company is conducting with the adipose stromal cells in engineering cell sheets and their potential application

mesenchymal stem cells cell sheet cryopreservation Allogenic

| 1. introduction

Different types of stem cells are used for research and for translational medicine: embryonic stem cells (ESCs) 1,
mesenchymal stem cells (MSCs) &, and induced pluripotent stem cells (iPSCs) . Ethical debates about the use
of ESCs make their use more difficult for human application 4, even if clinical trials have been conducted recently
with ESCs [4l. The iPSCs can be engineered by the transfection of four different factors into somatic cells ], but as
for the ESCs, the iPSCs have also raised ethical issues RIEIZ and clinical trials are conducted all over the world,
but mainly in the USA, China, Japan, and France [&. The European Medical Agency approved cell therapies in the
past few years: Chondrocelect was the first approved cell therapy in 2009 [9]. This review is not focused on
presenting the different types of stem cells used for cell and gene therapies, but it is focused on the MSCs and cell

sheet engineering with MSCs.

MSCs are very popular cells used in the research and over sixty-eight thousand publications involving the use of
MSCs were published on PubMed, as of January 2021 [29, MSCs are pluripotent stem cells that were discovered
around 30 years ago [@, and they can be isolated from bone marrow, adipose tissue, Wharton'’s jelly, periosteum,
villous chorion, fetus, and dental pulp BIILUR2I13]14] and there are no ethical issues. In the organism, the function
of the MSC is to support the structure of the organs but also to generate cells of the specific organ when it is
required. They adhere quickly to the cell culture surface, and their morphology is fibroblastic. They can be cultured
easily, and their stemness is characterized by the capacity of the MSC to self-renew and maintain the stemness
properties, being passaged many times without karyotype alteration 22!, However, there is always a risk that MSCs

could transform into sarcoma €, requiring a long-term follow-up on preclinical animal studies and clinical trials, up
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to 15 years based on the Food and Drug Administration guidelines (FDA). MSCs curative properties and

advantages can be divided in three different parts:

(a) They can differentiate into different types of cells (before or after transplantation), and the self-renewal property
of the MSC is very important, but it is a critical characteristic that must be understood. Even with a self-renewal
capacity, the aging of the MSC could be a major problem with an increase of mutation and loss of differentiation
capacity 1728l |n 2006, Dominici et al. published a list of the minimal criteria defining the MSC: MSC must express
CD73, CD90, and CD105, and must lack the expression of CD14, CD19, CD34, CD45, and HLA-DR; in addition,
MSCs must differentiate into cells originated from the three embryonic stem cell germ layers (endoderm, ectoderm,

and mesoderm [22)) such as adipocytes, chondrocytes, and osteoblasts, as the most used 22,

(b) MSCs have anti-inflammatory potential and immune-modulatory properties, and promote cell growth and tissue
repair, through the secretion of cytokines and extracellular vesicles 2. In addition to this, the absence of HLA
class Il protein is a key factor, because MSCs could be used for allogeneic graft on patients, facilitating the use of
MSCs in cell therapies. The activation of the HLA Class Il leads to a rejection of transplanted cells or organs [221[23]
(24][25] Fynctional MSCs do not express or express a very low level of HLA-DR (major histocompatibility complex
class Il, MHC Il), meaning that MSCs have a lower immunogenicity than that of other cells (281271281291 | vitro
studies showed that human bone marrow stem cells (BMSCs) are not recognized by T-lymphocytes but can
suppress the proliferation of the T-lymphocyte 22, For the past 20 years, human MSCs were used in animal
studies, with successes, on the basis of the low probabilities that the xenotrans-plantation of human cells in
animals will trigger an inflammatory response and the human MSC rejection. Human MSCs (hMSCs) were injected
in different animals without any adverse events reported: mouse B9, rat 11, rabbit 32, zebrafish 3, swine 4], and
dog B3l and as review for xenotransplantation of hMSCs 281, This positive characteristic can be used for gene and
cell therapy preclinical tests on animals before translational application, by using the MSCs that are planned to be
utilized in the clinical trials (e.qg., culture media, approved cells for clinical used by Federal Agencies). The absence
or low immunogenicity of MSCs will allow their mass production, a better characterization, and the decrease of
cost. In the other hand, MSCs act also as immunomodulators, by reducing inflammatory activity BZB8IE and were
used as a racehorse cure with no immunoreaction #%, for the bone repair of rats 4, in a human trial for Crohn’s

disease 421[43144]451146] and for perianal fistula 4448 as outlined in a review publication 421,

(c) An additional positive criterion is the large-scale manufacturing of the MSCs, which will provide enough cells for
cell therapies [50, 51]. Typing the key words “bioprocessing, mesenchymal stem cells” in PubMed, there are only
160 publications referring to the large-scale production methodology of the mesenchymal stem cells. The
bioprocessing of any stem cells must be well planned and controlled, including the determination of the donors
(inclusion/exclusion criteria), the methodology of isolation, the type of culture media, and the processes for the
mass production B9, Positive and negative outcomes of stem cell therapy for animal studies and clinical trials can
be related with the modification in the stem cells’ bioprocessing 11, It is encouraged to work with MSC providers
(or any other cells) that have an approved chemistry, manufacturing, and control for clinical trials, to facilitate the

transition from preclinical to clinical trials; but it is also important to determine the cell culture conditions in the
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preclinical phase that will be used in the clinical trials to ensure that the data obtained in the preclinical studies and

the methodologies will be approved by the federal agencies.

MSCs are the most used stem cells in clinical trials, and MSCs have shown promising hope for patients in need of
gene and cell therapies B2, and over 1220 clinical trials have been conducted over the world (keyword:
mesenchymal stem cell at clinicaltri-als.gov). Most of the clinical trials reached phase I and II, and very few of them
reached phase Ill. MSCs can be easily isolated from different tissues. Even if bone marrow stem cells are still the
MSCs used most often, the invasive procedure to isolate the bone marrow makes it more difficult and more
stressful for the donors 23, compared with the use of adipose stem cells that can be easily isolated from
liposuction B4IB3, |n addition, the number of isolated adipose stromal cells from the liposuction can be 50,000
times higher than the number of bone marrow stem cells isolated from the bone marrow B8IE7IBE] For all these
reasons listed above, we decided to study the potential of the adipose stromal cells, a specific mesenchymal stem

cell.

| 2. Mesenchymal Stem Cells Therapies

Engineering of tissues and organs with mesenchymal stem cells involves not only the stem cells but it could also
involve biocompatible scaffolds, important for cell signaling stimulation and for transplantation 2269 The simplest
and most economical methodology to treat patients with MSCs is the injection of isolated MSCs. On the other
hand, a more complex approach consists in growing the cells in a 3D structure, using different methodologies for
support, such as scaffolds and 3D printing. The efficiency of the cell therapy is based not only on the quality and

the stem cell phenotype, but it is also related with the transplantation methodology of the cells.

Our company decided to develop cell sheets using mesenchymal stem cells, to target the cells on the damaged

area, in absence of a specific scaffold, for different reasons: cheaper methodology, no additional step is necessary
to prepare the culture dish to engineer cell sheet, absence of scaffold will not lead to fibrosis in the empty space left
during the scaffold degradation and harvesting of cell sheet requires strong cell-cell connection and extracellular
matrix. The use of cell sheet increases the cell survival and limits the potential ectopic biodistribution of the cells
after transplantation, when the life span of injected single cells is very short (hours to weeks) (162631 The

increase of the cell lifespan increases and extend the curative properties of the transplanted cells.

Biodistribution after cells injection/transplantation is a major concern for the federal agencies, especially to
determine if the cells could be a threat to a patient’s health on a long-term treatment. When medications are
absorbed by the patients, the medications are distributed, metabolized, and excreted after a certain period of time
(64 On the contrary, stem cell treatments are expected to or could have a very long-term effect. The timeline for the
pharmacokinetics (PK) of cell treatment is different from that of the drugs PK, and cells should be followed up for
an extended period, estimated to a year’s level. For a long term follow up, with our actual technology, only a
genetic modification of the cells can be performed. At the best of our knowledge, there is no approved genetic cell
modification to study over a long period of time the fate of the transplanted cells. Side effect of genetically modified

cells will be a major concern that will require a large group of patients to determine the safety of the modifications.
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However, this approach has two advantages: it will be possible to have a long-term follow-up of the cells if the

trackers are expressed by the cells and the cell viability could be confirmed.

The stability and the storage of the cell sheets is also another important part of the product development. As for the
organs that must be discarded after a short period of time, those organ-based stem cells must be discarded if they
are not used rapidly, but this problem could be overcome if the cell-based organs could be vitrified and stored for a
long term in nitrogen liquid. As for many biological living products based on cells, the shelf life of the products can
be short, especially if the cells are still in proliferation. It is then necessary to deliver the final product to the patients
as soon as possible, but it is not always possible. The objective of the cell sheet vitrification is to build a bank of the
cell sheets and transplant them, after the thawing test. Because of the low immunogenicity of the MSCs, this
methodology will allow to have a large bank of cell sheets, available in a very short time for the patients, for
allogeneic transplantation. Ohkawara et al. vitrified cardio-cell sheets and stored them in nitrogen liquid from 2
days to 3 months, without affecting the cell sheet morphology on a macroscopic level, and their cell therapy
function, after transplantation on the heart. This not only means that the cell sheets maintained their curative
properties, but also shows that xenogeneic transplantation with human stem cells can be performed and by
consequence, allogeneic transplantation is possible 3. Because cell sheet therapies are a recent medical
treatment, we do not have long-term experience on the potential harm of cryopreserved cell sheets after
transplantation, and further studies are required to improve new cryopreservation and thawing protocols 681671, |n
the field of cell sheet cryopreservation, very few publications and data are available E3I68I6970[71] 5nd additional

studies will be needed to improve the methodology and the safety of the cryopreservation

Engineering cell sheet with mesenchymal stem cells is a very important branch in the field of the regenerative

medicine, which has been growing for the past 20 years. In addition to the use of the cell sheet for cell therapy,

numerous other applications could be used (Figure 1):

Formation of complex tissue, by stacking different type of cell sheets [Z2;
Gene therapy [Z3I74I75];

Drug high-throughput screening [Z8;

Engineering decellularized cell sheets 78],
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Figure 1: Summary of the multiple applications for cell sheets.
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