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[B-adrenergic receptor stimulation (B-ARS) is a physiological mechanism that regulates cardiovascular function
under stress conditions or physical exercise, producing a positive inotropic (enhanced contraction), lusitropic

(faster relaxation), and chronotropic (increased heart rate) effect.

[3-adrenergic receptor stimulation mathematical modelling cardiac electrophysiology

cardiomyocyte

| 1. Introduction

[-adrenergic receptor stimulation (B-ARS) is a physiological response mechanism that plays a fundamental role in
the regulation of cardiomyocyte activity, producing a positive inotropic (enhanced contraction), lusitropic (faster
relaxation), and chronotropic (increased heart rate) effect. Such a multifactorial response is triggered via the
activation of the B-adrenergic receptors by the sympathetic nervous system, under either stress conditions or

physical exercise, and is also known as the “fight-or-flight” response.

B-adrenergic receptors were first described by Lands et al. in the late 1960s L2, They are situated on the
cardiomyocyte membrane and react to different neurotransmitters (norepinephrine, epinephrine) and drugs
(isoprenaline). When binding with the adrenergic receptor takes place, it starts a reaction cascade where different
cellular substrates become phosphorylated, affecting their individual roles in the overall excitation—contraction
coupling. As a result, under healthy physiological conditions, the cardiac action potential shortens, while the
intracellular calcium transient exhibits an increased amplitude and a faster decay rate as the main manifestations
of B-ARS at the cellular level B4l However, the large number of components involved in the B-adrenergic cascade,
and the complexity of these subcellular processes and interactions, make B-ARS signalling highly sensitive to
cellular changes and to pathological perturbations. As a result, B-ARS plays a main role in a considerable number

of heart diseases [, and it is well established as an important contributor to cardiomyocyte arrhythmogenicity [©IZ]
8],

In particular, the B-ARS response has direct effects on the ion channels and pumps of the cell membrane (and,
therefore, on intracellular ionic concentrations) regulating calcium intake, intracellular calcium handling, calcium
extrusion, and cellular repolarisation. Impairments in the balance between these carefully orchestrated processes
can affect heart function and render its constituent cardiomyocytes susceptible to proarrhythmic events, such as

early and delayed afterdepolarisations (EADs and DADs, respectively). Such afterdepolarisations under 3-ARS are
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common proarrhythmic manifestations in isolated cardiomyocytes from patients of different pathologies, especially
those characterised by action potential and calcium transient abnormalities (such as hypertrophic cardiomyopathy
@ long QT syndrome QYL or catecholaminergic polymorphic ventricular tachycardia 12). An overstimulated p-
ARS response is also one of the main mechanisms of cardiac hypertrophy, coronary artery disease, or stroke
events 13l The overexpression of the B-adrenergic response has also been linked to the onset of cardiac
hypertrophy or the generation of fibrotic tissue 2413 The appearance of these structural changes can lead to the
creation of re-entry pathways in myocardial tissue, which also contribute to the generation of self-sustained
arrhythmias. Induced arrhythmias are also a common manifestation in heart failure. In chronic heart failure, cardiac
remodelling at the structural level can affect the pathways involved in the B-ARS response 18, As a result, the
inotropic response of cardiomyocytes to B-ARS is reduced 1728l while the propensity to arrhythmogenic events
increases. B-adrenergic response is also affected by ageing, and an age-dependent impairment between 3-ARS
and cardiac function has been demonstrated in both healthy and failing hearts 1229 B-ARS is altered as well in
severe congenital heart disease patients 21, Finally, recent studies also suggest a hyperactivation of the positive
response of B-ARS patients with coronavirus disease 2019 (COVID-19), potentially leading to life-threatening
arrhythmic events [221(23],

Refined knowledge of the role that each cellular component has within the [B-ARS cascade, and of the
consequences that may arise from disturbing its normal functioning, can therefore lead to a better understanding of
different pathologies, as well as to the development of new pharmacological targets for their treatment. In these
cases, mathematical modelling and simulation studies of B-ARS can be useful tools for investigating the
mechanisms mediating arrhythmic events, assessing their multiscale consequences from the subcellular up to the
organ levels, and designing effective treatments [24. Here, we review the main roles of B-ARS in cellular cardiac
electrophysiology, placing our emphasis on the description of the existing mathematical frameworks available for its
representation and how insights obtained through experimental approaches have been integrated into these

mathematical formulations.

| 2. Mathematical Models of B-ARS

Several mathematical formulations, with varying degrees of complexity and physiological detail, have been
proposed to date to describe different aspects of B-ARS in cardiac myocytes. In particular, special attention has
been given to the modelling of B-ARS in mammalian ventricular electrophysiology, while studies on atrial
electrophysiology are considerably lagging. Table 1 summarises the main B-ARS computational frameworks

discussed in this section as landmark studies underlying the foundation of these modelling efforts.

In general terms, cardiac myocytes present three different subtypes of B-adrenergic receptors (B-AR): B1-AR, B2-
AR, and B3-AR [23 the former two being the most prevalent and important. Many of the existing mathematical
models of B-ARS describe the binding of an agonist, usually isoproterenol (ISO), to B1-AR and B2-AR and the
subsequent phosphorylation cascade. In particular, the binding with B-ARs activates the receptor-bound stimulatory
G protein, which enhances the production of 3'-5'-cyclic adenosine monophosphate (cCAMP), activating protein

kinase A (PKA). PKA phosphorylates key cellular substrates that affect the functioning of several channels and ion
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pumps. The main targets located on the sarcolemma are the L-type calcium channels (Ic;) 28, slow delayed
rectifier potassium (lxs) channels 24, fast sodium current (ly,) channels 28 the cystic fibrosis transmembrane
conductance regulator (Icprr) 22BY, and the sodium—potassium pump (Iyax) B2. At the subcellular level, PKA also
phosphorylates the ryanodine receptors (RyRs) and phospholamban (PLB) [28321 poth located on the
sarcoplasmic reticulum, as well as troponin | (TPNI) B3], myosin binding protein-C 23, and titin 4], these located
on the myofilaments. A graphical representation of the main PKA phosphorylation cascade is presented in Figure
1

Table 1. Landmark studies in the mathematical modelling of B-ARS in cardiac electrophysiology.

Model (Year) Species Fs-(/)-\fsfm Signalling Substrates Main Model Advances
Zeng and Rudy Guinea lcaL; lk; PLB; S;fzstliuoi?ns:etgseirlusopmterenm
[35] . Generic  None cabs o ’ y g
Pig Inak; INa conductances and parameter
(1995) .
shift
Saucerman et al. Dynamic target phosphorylation
[36] Rat B1 CAMP; PKA  Icq; PLB ini/e rated w?th cpell sipnal?i/n
(2003) 9 ghatiing
Greenstein et al. L PLB: Introduction of a binary
(27] Dog Generic  None |Ca|_, » ke population-based approach for
(2004) Ks target phosphorylation
lancu et al. * 58] i i i
G_umea B1 CAMP N/A Cellular 5|gnall|_ng
(2007) Pig compartmentation
Soltis & . ) .
Saucerman 22 Rabbit B1 CAMP: PKA |CaL,.|Ks, !DLB, Integra.tlon with dynamic CaMKII
(2010) RyR; Tnl; Icrtr regulation
e e, B lcaLs Iks Ikurs Two diff_erent B isoforms; _
2011 Dog B1, B2 CAMP; PKA  PLB; Inak; Ina; population-based approach with
( ) RyR; Tnl four different populations
[40] lcat; INas INak; Compartmentalised mouse
Bzcz)nlciarenko Mouse B1 CAMP; PKA  RyR; lkyr lo; model with new L-type calcium
( ) lk1; PLB; Tnl channel subpopulations
Khalilimevbodi et CAMP; PKA,; Addition of new molecular
ol * 141] (g018) Mouse B1, B2 GSK3p; N/A signalling pathways (GSK3f3
' ERK and ERK)

References o _ o _ _
* Models focused only on signalling (not directly considering substrate phosphorylation). N/A: not applicable.

1. Lands, A.M.; Arnold, A.; McAuliff, J.P.; Luduena, F.P.; Brown, T.G. Differentiation of receptor
systems activated yI atfiorifietic aminkat Natur,g‘,1967,'21:r!f,I e shs.
- _ i —un
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