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β-adrenergic receptor stimulation (β-ARS) is a physiological mechanism that regulates cardiovascular function

under stress conditions or physical exercise, producing a positive inotropic (enhanced contraction), lusitropic

(faster relaxation), and chronotropic (increased heart rate) effect. 
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1. Introduction

β-adrenergic receptor stimulation (β-ARS) is a physiological response mechanism that plays a fundamental role in

the regulation of cardiomyocyte activity, producing a positive inotropic (enhanced contraction), lusitropic (faster

relaxation), and chronotropic (increased heart rate) effect. Such a multifactorial response is triggered via the

activation of the β-adrenergic receptors by the sympathetic nervous system, under either stress conditions or

physical exercise, and is also known as the “fight-or-flight” response.

β-adrenergic receptors were first described by Lands et al. in the late 1960s . They are situated on the

cardiomyocyte membrane and react to different neurotransmitters (norepinephrine, epinephrine) and drugs

(isoprenaline). When binding with the adrenergic receptor takes place, it starts a reaction cascade where different

cellular substrates become phosphorylated, affecting their individual roles in the overall excitation–contraction

coupling. As a result, under healthy physiological conditions, the cardiac action potential shortens, while the

intracellular calcium transient exhibits an increased amplitude and a faster decay rate as the main manifestations

of β-ARS at the cellular level . However, the large number of components involved in the β-adrenergic cascade,

and the complexity of these subcellular processes and interactions, make β-ARS signalling highly sensitive to

cellular changes and to pathological perturbations. As a result, β-ARS plays a main role in a considerable number

of heart diseases , and it is well established as an important contributor to cardiomyocyte arrhythmogenicity 

.

In particular, the β-ARS response has direct effects on the ion channels and pumps of the cell membrane (and,

therefore, on intracellular ionic concentrations) regulating calcium intake, intracellular calcium handling, calcium

extrusion, and cellular repolarisation. Impairments in the balance between these carefully orchestrated processes

can affect heart function and render its constituent cardiomyocytes susceptible to proarrhythmic events, such as

early and delayed afterdepolarisations (EADs and DADs, respectively). Such afterdepolarisations under β-ARS are
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common proarrhythmic manifestations in isolated cardiomyocytes from patients of different pathologies, especially

those characterised by action potential and calcium transient abnormalities (such as hypertrophic cardiomyopathy

, long QT syndrome , or catecholaminergic polymorphic ventricular tachycardia ). An overstimulated β-

ARS response is also one of the main mechanisms of cardiac hypertrophy, coronary artery disease, or stroke

events . The overexpression of the β-adrenergic response has also been linked to the onset of cardiac

hypertrophy or the generation of fibrotic tissue . The appearance of these structural changes can lead to the

creation of re-entry pathways in myocardial tissue, which also contribute to the generation of self-sustained

arrhythmias. Induced arrhythmias are also a common manifestation in heart failure. In chronic heart failure, cardiac

remodelling at the structural level can affect the pathways involved in the β-ARS response . As a result, the

inotropic response of cardiomyocytes to β-ARS is reduced , while the propensity to arrhythmogenic events

increases. β-adrenergic response is also affected by ageing, and an age-dependent impairment between β-ARS

and cardiac function has been demonstrated in both healthy and failing hearts . β-ARS is altered as well in

severe congenital heart disease patients . Finally, recent studies also suggest a hyperactivation of the positive

response of β-ARS patients with coronavirus disease 2019 (COVID-19), potentially leading to life-threatening

arrhythmic events .

Refined knowledge of the role that each cellular component has within the β-ARS cascade, and of the

consequences that may arise from disturbing its normal functioning, can therefore lead to a better understanding of

different pathologies, as well as to the development of new pharmacological targets for their treatment. In these

cases, mathematical modelling and simulation studies of β-ARS can be useful tools for investigating the

mechanisms mediating arrhythmic events, assessing their multiscale consequences from the subcellular up to the

organ levels, and designing effective treatments . Here, we review the main roles of β-ARS in cellular cardiac

electrophysiology, placing our emphasis on the description of the existing mathematical frameworks available for its

representation and how insights obtained through experimental approaches have been integrated into these

mathematical formulations. 

2. Mathematical Models of β-ARS

Several mathematical formulations, with varying degrees of complexity and physiological detail, have been

proposed to date to describe different aspects of β-ARS in cardiac myocytes. In particular, special attention has

been given to the modelling of β-ARS in mammalian ventricular electrophysiology, while studies on atrial

electrophysiology are considerably lagging.  Table 1 summarises the main β-ARS computational frameworks

discussed in this section as landmark studies underlying the foundation of these modelling efforts.

In general terms, cardiac myocytes present three different subtypes of β-adrenergic receptors (β-AR): β1-AR, β2-

AR, and β3-AR , the former two being the most prevalent and important. Many of the existing mathematical

models of β-ARS describe the binding of an agonist, usually isoproterenol (ISO), to β1-AR and β2-AR and the

subsequent phosphorylation cascade. In particular, the binding with β-ARs activates the receptor-bound stimulatory

G protein, which enhances the production of 3′-5′-cyclic adenosine monophosphate (cAMP), activating protein

kinase A (PKA). PKA phosphorylates key cellular substrates that affect the functioning of several channels and ion
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pumps. The main targets located on the sarcolemma are the L-type calcium channels (I ) , slow delayed

rectifier potassium (I ) channels , fast sodium current (I ) channels , the cystic fibrosis transmembrane

conductance regulator (I ) , and the sodium–potassium pump (I ) . At the subcellular level, PKA also

phosphorylates the ryanodine receptors (RyRs) and phospholamban (PLB) , both located on the

sarcoplasmic reticulum, as well as troponin I (TPNI) , myosin binding protein-C , and titin , these located

on the myofilaments. A graphical representation of the main PKA phosphorylation cascade is presented in Figure

1.

Table 1. Landmark studies in the mathematical modelling of β-ARS in cardiac electrophysiology.

* Models focused only on signalling (not directly considering substrate phosphorylation). N/A: not applicable.
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Model (Year) Species β-ARS
Isoform Signalling Substrates Main Model Advances

Zeng and Rudy

(1995)

Guinea
Pig

Generic None
I ; I ; PLB;
I ; I

Simulation of the isoproterenol
effect by increasing
conductances and parameter
shift

Saucerman et al.

(2003)
Rat β1 cAMP; PKA I ; PLB

Dynamic target phosphorylation
integrated with cell signalling

Greenstein et al.

(2004)
Dog Generic None

I ; PLB; I ;
I

Introduction of a binary
population-based approach for
target phosphorylation

Iancu et al. * 
(2007)

Guinea
Pig

β1 cAMP N/A
Cellular signalling
compartmentation

Soltis &
Saucerman 
(2010)

Rabbit β1 cAMP; PKA
I ; I ; PLB;
RyR; TnI; I

Integration with dynamic CaMKII
regulation

Hiejman et al. 
(2011)

Dog β1, β2 cAMP; PKA
I ; I ; I ;
PLB; I ; I ;
RyR; TnI

Two different β isoforms;
population-based approach with
four different populations

Bondarenko 
(2014)

Mouse β1 cAMP; PKA
I ; I ; I ;
RyR; I ; I ;
I ; PLB; TnI

Compartmentalised mouse
model with new L-type calcium
channel subpopulations

Khalilimeybodi et
al. *  (2018)

Mouse β1, β2
cAMP; PKA;
GSK3β;
ERK

N/A
Addition of new molecular
signalling pathways (GSK3β
and ERK)

[35] CaL K

NaK Na

[36]
CaL

[37] CaL Kr

Ks

[38]

[29] CaL Ks

CFTR

[39] CaL Ks Kur

NaK Na

[40] CaL Na NaK

Kur to

K1

[41]



β-Adrenergic Stimulation | Encyclopedia.pub

https://encyclopedia.pub/entry/12729 4/8

Figure 1. Schematic representation of the ionic currents and subcellular targets considered in modelling studies of

β-ARS and the subsequent PKA phosphorylation cascade. The currents marked with an encircled P represent the

different PKA targets. Adapted from  under the Creative Commons Attribution (CC BY 4.0) license.

The first modelling approach for the consideration of β-ARS in cardiac electrophysiology described the effects of β-

ARS by upscaling the magnitude of the most significantly upregulated ion channels during the β-adrenergic

response (notably I  and I ) or by shifting the activation curves of these currents . Despite its simplicity,

such an approach is sufficient to replicate to a good extent the main steady-state effects of β-ARS at the cellular

level, such as action potential shortening, increased calcium transient amplitude, or a potentiated

arrhythmogenicity. A more complex model developed by Greenstein et al.  accounted for these changes using a

population-based approach, i.e., treating phosphorylation as a binary process independent of channel gating. This

assumption implies that, at each time step, ionic concentrations and ionic currents or fluxes can be expressed as

the sum of their phosphorylated and nonphosphorylated cellular parts. However, the steady-state nature of the

abovementioned models imposes limitations for investigating transient behaviours in the activation of β-ARS or in

dissecting the contribution to the β-ARS response of subcellular targets of PKA phosphorylation.

Saucerman et al. were the first authors to develop, in the early 2000s, a dynamic formulation of β-ARS . The

model incorporated a complete phosphorylation cascade of the L-type calcium channel and PLB in a rat ventricular

myocyte electrophysiological model. The authors considered an extensive validation against published

experimental data, including the temporal response of cAMP to ISO , PKA activation levels as a function of the

concentration of cAMP , and PLB phosphorylation to ISO , together with experimental recordings of whole-

cell patch-clamp I  current, calcium transients, and action potentials . This seminal model of β-ARS has been

expanded in multiple subsequent studies. Soltis and Saucerman added dynamic phosphorylation by

Ca /calmodulin-dependent protein kinase II (CaMKII), in combination with the previously described PKA

phosphorylation, to rabbit ventricular cardiomyocytes . Phospholemman phosphorylation was also included in

later works . The model was also expanded by Negroni et al. to present an integrated framework of β-ARS and

cardiac mechanical contraction . More recently, Meyer et al. investigated a quasi-steady-state approximation of

the Soltis and Saucerman model, demonstrating that their reduced-order formulation captured many of the features

of the complete model while providing an efficient approximation over a broad range of parameter conditions .

The next landmark in β-ARS modelling was provided by Iancu et al., who proposed a new model considering

cellular compartmentation of cAMP . This led to a β-ARS model response dependent on local cAMP and PKA

concentrations in the different cellular domains. The model response was compared to published measurements of

cAMP activity under β-ARS . The compartmentation introduced by the model provided a mechanistic

explanation of how the high concentrations of cAMP as measured in experiments can modulate PKA activity.

The ideas described in the Saucerman and Iancu models were further developed by Heijman et al. . In their

work, they developed a compartmental model of β-ARS of the canine ventricular myocyte, including a dynamic β-

ARS response integrated with CaMKII signalling. The main novelties of the model were the consideration of β1 and

β2 isoforms in β-ARS stimulation and the use of a population-based approach with four different populations
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and rodent experimental data, from measurements of molecular signalling (cAMP levels, adenylyl cyclase activity,

PKA substrate ) to the complete cellular response (action potential duration, calcium transients ). The
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and time constants to mimic the β-ARS response in other species, including humans .
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elements of the Heijman model, such as the compartmentalisation of the β-ARS system, but considered two types

of L-type calcium channels and a different localisation of the RyRs in the compartmentalisation. The model
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