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Four sensory systems (vestibular, lateral line, electroreception, auditory) are unique and project exclusively to the

brainstem of vertebrates. All sensory neurons depend on a common set of genes (Eya1, Sox2, Neurog1, Neurod1) that

project to a dorsal nucleus and an intermediate nucleus, which differentiate into the vestibular ear, lateral line and

electroreception in vertebrates. 
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1. Introduction

Sensory maps depend on the specific sensory modality and the relevant information to be extracted by them. Beyond

primary sensory maps, central map formation underlies the integration of various sensory modalities, namely the ear,

lateral line and electroreception. The four primary sensory maps of vertebrates have unique features and seemingly use

distinct molecular cues, cell cycle exit and activity combinations during development, regeneration and plasticity. The

evolution of chordates is comparable with the organization of the dorsal spinal cord and brainstem, which is associated

with neurons and hair cells in 71,000 vertebrates. On the other hand, we have limited support for the two chordates

associated with the neural crest and placodes, hair cells and central brainstem in 31 species of lancelets and 3100

species of ascidians. Fossils appeared approximately 540 million years ago (Mya), and all major bilaterian phyla

presented by 500 Mya .

The brainstem of vertebrates is organized into rhombomeres (r0-11) that superficially resemble other chordates, lancelet

and ascidians . A dorsal part of the brainstem expresses a continuation to the spinal cord in vertebrates  which is

absent in a true brainstem in other chordates. Partial similarity is found in ‘dorsal root ganglia’ in ascidians that resembles

the spinal cord in vertebrates, which is absent in lancelets . Adding these differences in chordates, gene duplication

, followed by diversification , is the basis for the unique brainstem, neurons and hair cells that developed in

vertebrates . The unique formation of mechano- and electroreception evolved in four distinct sensory inputs that are

partially similar with the lateral line of ascidians . The progression must start with the sensory neurons that

connect all neurons with the brainstem and reach out the peripheral sensory hair cells.

Neurons depend upon Eya1 , Sox2 , Neurog1  and Neurod1 . In contrast to Neurog1 null mice, which showed

a complete loss of neurons , Neurod1 null mice showed residual neurons extending centrally to smaller vestibular and

cochlear nuclei  that reached the ear . It is worth noting that the lateral line and electroreception are separate

for the vertebrate ear that is lost in most tetrapods to generate novel cochlear neurons, the spiral ganglion neurons

(Figure 1).

The brainstem is a continuation of the spinal cord (SC; ) that develops into rhombomeres and differentiates into

nuclei, namely the vestibular, lateral line and electroreception nuclei in basal vertebrates (Figure 1). Loss of the lateral

line and electroreception leads to the development of cochlear nuclei in tetrapods . All dorsal expression of the

brainstem depends on Lmx1a/b  and Gdf7 , which drive the choroid plexus (Figure 1).

Combined, Lmx1a/b and Gdf7 regulate the formation of Wnt1/3a, BMP4/7 and Atoh1. This formation is likely reduced or

absent in Neurog1/2, Ascl1, Ptf1a and Olig3, among others (Figure 1).
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Figure 1. Inner ear, lateral line and electroreception revealed. Neurons (Neurog1; A’) form vestibular ganglia (VGN) to

reach out 4 hair cell organs in lampreys (A”). A separate lateral line (LL) and electroreceptor neurons (ELL) that innervate

hair cells project more dorsal in lampreys. Central projection depends on Atoh1 to receive LL and ELL fibers, whereas

several bHLH genes (Neurog1/2, Olig3, Ascla1, Ptf1a) receive all VGN (A). In the absence of ELL and LL development in

amniotes, mammals develop separate spiral ganglion neurons (SGN; B’) that extend from the cochlea (B”) and end in a

topological central projection that depends on Atoh1 (B). The formation of VGNs (Neurog1; B’) reach the 5 hair cells (B”)

to extend the distribution of bHLH genes. Note that certain areas are lost or gained which enter central projections near

r4. Images are shown by miR-183 ISH (A”) and Atoh1-LacZ (B”). AC, anterior crista; AVCN, anteroventral cochlear

neurons; CB, cerebellum; aLL, pLL, anterior/posterior lateral line neurons; CM, common macula; DC, dorsal crista; DCN,

dorsal cochlear neurons; HC, horizontal crista; PC, posterior crista; r2/4/6, rhombomeres; S, saccule; SC, spinal cord; U,

utricle. Modified after .

Mechanosensory and electrosensory hair cells (Figure 1) depend on Eya1, Sox2 and Atoh1 to initiate the cell cycle and to

differentiate into vestibular, cochlear, lateral line and electrosensory hair cells . Planar cell polarity (PCP) depends

on the formation of shifting the central projection of the kinocilium into a lateral position. PCP extends the length of the

stereocilia to develop the staircase of tip links of the vestibular, cochlear and lateral line hair cells . The next step

involves the development of the tip links to allow the connections between CDH23 and PCDH15 to open up the channel to

form a mechanosensory hair cell , with opposing polarity in most of the ear and lateral line 

. TMC1/2 provides a major function that seems to interact with additional channel proteins (TMHS, TMIE), forming a

complex interaction . In contrast, while the electroreception forms next to lateral line hair cells , these

hair cells lack any polarity organization, and certain ampullary hair cells are dependent on Ca 1.3 .

2. Neurons Depend upon Eya1, Sox2, Neurog1 and Neurod1

The ear, lateral line and electroreception neurons depend on genes that, collectively, define their development. Upstream

of bHLH genes, which initiate the proliferation of neurons, is the expression of Eya1, which interacts with Brg1 to initiate

pro-neurosensory development . In the absence of Eya1, there is no neuronal development that allows ear

formation, and neither neurons nor hair cells differentiate . Evolving neurons start in the lancelet, which lack dorsal root

ganglia. The dorsal root ganglia show partial expression of Neurog inside the spinal cord (Figure 2), which lacks

an Atoh gene . In contrast, at least a smaller set of bHLH genes are partially characterized in the developing

ascidian, Ciona , which have at least six bHLH genes driving neuron development: Ptf1a, Tcf3, Atoh,
Ascl and Neurog . A detailed serial section analysis shows the innervation of sensory cells (Atoh) from fibers of the

neurons (bipolar tail neurons; Figure 2) that can trace to reach the anterior motor ganglion . Neither the full expression

of Eya nor Sox2 outside the neural plate are unclear in the lancelet and tunicates .
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Figure 2. Neurons require Neurog expression. Lancelets have a limited description of bHLH genes that are characterized

in the more caudal spinal cord, which is positive for Neurog. Note that the lancelet has no Atoh bHLH gene. Ciona has at

least 6 bHLH genes expressed in sensory cells that are innervated by bipolar tail neurons which extend to reach the

visceral ganglion for interactions. Atoh and Neurog genes are described in Ciona associated with the spinal cord.

Vertebrates have dorsal root ganglia that depend on Neurog1/2, which is also expressed in Atoh1 and Neurog1 of the

spinal cord. The brainstem is innervated by electroreceptor (ELL) and lateral line fibers (LL) that extend to innervate

migration populations of LL and some ELL). The ear is unique in vertebrates, which give rise to the VIII ganglia that

innervate more ventral nuclei compared to LL and ELL projections to reach Atoh1. CP, choroid plexus. Modified after 

.

A crucial next step is the initiation of Sox2, which is needed to upregulate Neurog1 . In fact, Sox2 delays certain

neuron development in bony fish , and in the presence of Sox2 is unclear the sequence of gene regulation in the

lamprey and hagfish . There is a distinct effect of the loss of early genes in the vestibular ganglion, which initially

differentiates in the absence of Sox2 and Neurog1 (Figure 1 and Figure 2) and does not develop in the auditory neurons

. A loss of all auditory neurons, and partial loss of vestibular neurons, are known

for Pax2 , Gata3 , Lmx1a/b , Fgfr2 , Shh  and Dicer . Partial loss of some vestibular neurons are known

for Fgf10  and Foxg1 , indicating a limited loss of sensory hair cells and/or neurons. Unfortunately, the details of

the lateral line and electroreception (Figure 1, Figure 2 and Figure 3) are not as fully genetically characterized 

. The lateral line and electroreception likely depend on neuronal development (Figure 1 and Figure 2), including the

development of spinal ganglia neurons  and trigeminal neurons . A separate placode is derived from neurons

that develop from Neurog2 in mammals . In birds, this placode is driven by Neurog1 . Furthermore, separate

amniotic paratympanic placodal neurons innervate separate hair cells that partially integrate into the central vestibular

projection .

In addition to directly initiating the formation of neurons by Eya1, Sox2, Pax2 and Neurog1/2, another set of genes are

regulated to differentiate into Neurod1 , followed by Isl1, Foxg1, Pou4f1 and Phox2b , which

interact with Shh, BMPs and Wnts to define neurons . Regional regulation of the distinct vestibular, lateral line,

electroreception and auditory neurons are sorted out by downstream genes regulating the distinct innervation. For

example, the expression of Calbindin, Calretinin, Pou4f1 and Peripherin is required to sort out the innervation from the

inner and outer hair cells . In Sox10 null mice, an interaction showed disorganized cochlear neurons, whereas

the development of vestibular neurons was near normal . This interaction is consistent with the loss of Erb2 of nearly all

cochlear neurons, as well as reduced vestibular neurons . The concept of having multiple sources of neurons from the

placode and neural crest is likely due to a misinterpretation .
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Downstream of gene development, the expression of TrkB (Ntrk2) and TrkC (Ntrk3) has a reduction and loss in vestibular

and cochlear neurons. Vestibular neurons are mostly dependent on TrkB  whereas the cochlear neurons are mostly

dependent on TrkC . Loss of both neurotrophin receptors causes the early loss of all neurons . Limited

expression is characterized in some ascidians which are unknown in the lancelet . The comparable expression of the

lateral line and electroreception are unclear due to the multiplication of neurotrophins in bony fish .

The proliferation of neurons and hair cells depend on MycN , which drives the division of the G1, S and G2 phases

with a set of genes that interactions with cell cycle regulation . Detailed characterization and proliferation have

been described in the ear and brainstem, clarifying cell cycle progression in mice and rats 

. Sox2 and Neurog1 are in negative feedback, which allows proliferation and initiates differentiation. This differentiation

interacts with retinoblastoma (Rb), Hes/Hey and IDs to regulate the cyclin-dependent kinases (CDKs), cross-react with e-

proteins and define whether a cell cycle is progressing . In the end, continuation depends on either knocking

out Rb to continue proliferation or upregulating of Sox2 to jumpstart proliferation .

In various vertebra, the central projection has been described to show the projection of the vestibular, lateral line,

electroreception, and cochlea . Three sets of central projections are known in vertebrates that develop

a loss of the lateral line, electroreception and added cochlear nuclei . For electroreception, these central

projections always have a single set of an anterior ganglia (Figure 1 and Figure 3) that adds variably the electroreception

in bony fish . Lateral line neurons (Figure 1, Figure 2 and Figure 3) can be split into an anterior and posterior

branch that diversify the neuromasts to innervate all lateral line hair cells (Figure 3; ). Vestibular neurons have

two neuron populations in hagfish , while lampreys and jawed vertebrates have a single vestibular ganglion 

. At least 4-5 distinct innervations are described in lampreys , whereas most gnathostomes have at least five

and up to nine branches of vestibular and auditory connections (Figure 1 and Figure 3): three canal cristae, utricle,

saccule, lagena, basilar papilla, amphibian papilla and neglecta . Branches of discrete neurons are known for an

anterior and a posterior (superior) nucleus that innervates two canal cristae (anterior and horizontal cristae), the utricle

and part of the saccule (Figure 3). The remaining part of the utricle provides a posterior canal and the branch of the

saccule (Figure 1 and Figure 3) in mammals . The development of central projections follows a simple layout. First,

the trigeminal and epibranchial neurons develop. Then, central projection follows. Subsequently, vestibular, lateral line and

electroception develop, if present (Figure 3; ). Different developmental patterns exist in neuronal proliferation: nearly

all neurons continue proliferation for a long time or lifetime, whereas mammals have an early production of neurons that

ends proliferation very early . The topology of peripheral neurons of the vestibular, lateral line and

electroreceptors is unclear, suggesting an overlap with an incomplete segregation of neurons that is well known for the

vestibular neurons (Figure 3 ).

A long-term proliferation of the vestibular, lateral line and electroreception is followed by a delayed formation of cochlear

neurons, the spiral ganglia neurons (SGN), which follow vestibular neurons in mammals (vestibular neurons: E9-11; SGN:

E10-12 ). A unique topological development is known among mammals , first showing the basal turn neurons

(Figure 3), which reach the anteroventral, posteroventral, and dorsal cochlear nuclei (AVCN, PVCN, DCN). The

development of these neurons is followed, with delay, by the apical neurons . Interestingly, there are central

projections that can form independently to reach the formation of cochlear nuclei . In the absence of target hair cell

development , cochlear neurons develop and largely proliferate prior to cochlear nuclei and cochlear hair cells

(Figure 3). Central cochlea require the expression of Neurod1, Wnts, Fzd, Npr2 and Ephrins for targeted central

projections .
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Figure 3. Central projections form afferents to distinct innervation. The lateral line of 2 or more branches form, whereas

electroreception receives the short dorsal projection in lampreys (A,A’) and salamanders (B–H). Vestibular projection

forms after the trigeminal central projection, followed by the lateral line and electroreception (B–H). Central projection in a

frog (I) and mammal (J,J’) show the incomplete distribution of distinct neurons (J) that overlap and incompletely

segregate the vestibular projection (I,J’). Spiral ganglia (K) proliferate neurons in a base to apex progression (E10.5-12.5)

that reach the central projection to form a topology from dorsal to ventral cochlear nuclei (E10.5-13.5), depending on Wnt

expression. Later, hair cells proliferate from apex to base (E12.5-14.5) that reach the afferents. AC, anterior crista; dV,

trigeminal afferents; ELL, electroreception; HC, horizontal crista; LL1/2; lateral line; L, lagena; LVN, lateral vestibular

nuclei; IVN, inferior vestibular nuclei; iVN, inferior vestibular neurons; MVN, medial vestibular nuclei; PC, posterior crista;

S, saccule; sVN, superior vestibular neurons; U, utricle; Vmn, trigeminal motoneurons; VIII, vestibular projections.

Modified after .

In contrast to the topology of the cochlear nuclei , the central vestibular neurons have an incomplete central

segregation (Figure 3) that shows both segregation and overlap from different vestibular neurons . Lateral line

central projections can be segregated in certain vertebrates but show an overlap in other vertebrates . For

electroreception, multiple central topological projections in certain bony fish  show an overlap in lampreys and

salamanders (Figure 3 ). The vestibular, lateral line, electroreception and cochlea independently reach hair cells

that form prior to neurons , consistent with the same pattern of neurons that develop first, followed by the central

axon to the brainstem, and later followed by the hair cell innervation . This is obvious in cases where hair

cells are not formed, such as in Atoh1 null mice, which show a near-normal central projection . A similar central

projection forms after the loss of hair cells in Pou4f1 null mice . Loss of formation of a specific set of hair cells is

demonstrated in the posterior canal that projects normally, despite the absence of Fgf10 , which degenerates later.

In summary, the neurons of the ear, lateral line and electroreception are generated by a set of genes that act downstream

of Neurog1 to initiate the cell cycle. Neurons develop independently of central axons and reach innervate the hair cells

shortly after proliferation. Segregation of central projections can be topologically organized in the auditory central

projection of most tetrapods, and present two lateral line neurons that segregated in many vertebrates. Some central

topology found in some, but not all, lateral line and electroreceptors, show an incomplete segregation for the vestibular

neurons.
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