
MSCs - Gene Delivery Tool
Subjects: Cell Biology

Contributor: Gustavo Puras
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Committee of the International Society for Cellular Therapy (ISCT) proposed a set of standards for pre-clinical research

studies. The minimal criteria of MSCs as determined by the ISCT are the following ones: The MSCs population must be

plastic-adherent when maintained in tissue culture vessels under standard culture conditions.
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1.Introduction of MSCs

MSCs is a common acronym used to describe mesenchymal stemcell, Mesenchymal Stromal Cell,

orMedicinalSignalingCell. However, the debate is still ongoing over which of these long names best describes MSCs .

They are an example of “adult” stem cells that could be derived from various tissue types.

MSCs have been isolated from almost all tissues  and have been reported to play critical roles in many physiological

processes, such as tissue homeostasis, immunomodulation, and tissue regeneration .

Since the famous publications by Alexander Friedenstein et al., on MSCs, half a century ago, mounting evidence has

been accumulating that bone marrow (BM)-derived MSCs are capable of differentiating into other cells of mesenchymal

lineage (e.g., adipocytes, osteoblasts, chondroblasts, myocytes, and tenocytes, etc.,) . The authors were able to

isolate the plastic-adherent spindle-shaped cells that were capable of self-renewal and showed a multi-differentiation

potential.

Later on, more reports unveiled potential pluripotency where these cells can transdifferentiate into cells of other lineages,

endodermal (e.g., muscle, lung, and gut cells, etc.), and ectodermal (e.g., epithelial, and neural cells) Another interesting

feature of MSCs is their homing ability, meaning that they can migrate into injured tissues where they can contribute to the

physiological processes in ways more than one. They can differentiate into various local cell types at the injured sites, (ii)

they can secrete chemokines, cytokines, and growth factors that help in tissue regeneration, (iii)

In addition to BM, MSCs can be obtained from various sources such as, adipose connective tissue, synovial fluid, hair

follicles, dental pulp, salivary glands, amniotic fluid and membranes, endometrial lining, peripheral and menstrual blood,

placenta and fetal membranes, umbilical cord blood, and Wharton’s jelly . Therefore, due to the above-mentioned

appealing features, MSCs have quickly made the transition from benchtop to bedside .

To clearly define MSCs, and develop universal criteria for such cell population, the Mesenchymal and Tissue Stem Cell

Committee of the International Society for Cellular Therapy (ISCT) proposed a set of standards for pre-clinical research

studies .

The minimal criteria of MSCs as determined by the ISCT are the following ones:

The MSCs population must be plastic-adherent when maintained in tissue culture vessels under standard culture

conditions.

Nevertheless, such historical criteria have not been always correlated with the applicability of these cells in various

biomedical purposes. For instance, while CD markers might stay consistent over successive passages, MSCs tend to lose

their differentiation or immunomodulatory capabilities .

Despite the aforementioned criteria, ISCT now suggests considerable flexibility, particularly when it comes to MSCs the

lack of expression of the HLA Class II marker is conditionally expressed once stimulated by specific cytokines.
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Therefore, it is crucial to have the process of MSCs characterization well-standardized to enable accurate comparison of

study outcomes and to guarantee safety and efficacy in the field. Unfortunately, to date, no single marker has been

identified as being exclusively expressed by MSCs . Yet, the number of MSCs markers (positive and negative) is

expanding over time to help researchers verifying the MSCs features, thus increasing the confidence in the

obtained/transplanted cells.

In addition, various research teams have developed and expanded innovative molecular markers (e.g., proteomic and

epigenetic markers, transcriptome analysis, gene signature, etc.,). Despite all these trials to address the thorny question

about MSCs identity, there is still little consensus on these characterization methods. Therefore, Arnold I. Caplan  has

recently suggested the insignificance of characterizing every cell in every MSCs population in vitro. The author believes

that most of the propagated MSCs populations have become culture-adapted and can no longer display their innate (in

vivo) features, nor their therapeutic behavior, once transplanted.

2. MSCs as a Gene Delivery

The Food and Drug Administration (FDA) has defined gene therapy as “the administration of genetic material to modify or

manipulate the expression of a gene product or to alter the biological properties of living cells for therapeutic use.” An

essential aspect of gene therapy depends on designing a suitable gene delivery system to convey the cargo gene into the

target cells. More than half a century after their introduction as a novel therapeutic approach, and despite some adverse

effects seen in clinical trials, the concept of gene therapy remains to be acknowledged as a promising therapeutic

alternative for various clinical disorders. However, the obstacles encountered have fueled research efforts that led to the

improvement of gene carriers in terms of their efficacy and safety profiles.

Over the past decades, genetically engineered stem cells were feasibly used in cell-based gene delivery, providing long-

term therapeutic effects. Furthermore, continuous research efforts have been directed toward understanding the behavior

of individual stem cells in different tissue microenvironments, in vivo . In parallel, the implementation of more accurate

assays for MSCs and enhancement in gene vehicles have increased gene transfer efficiency. Nevertheless, quality control

of the protocols applied in human gene therapy remains crucial, especially when cells are used as a gene carrier for the

treatment of hereditary and acquired diseases.

For successful gene delivery to MSCs, the proper choice of the deliverable nucleic acid, as well as the delivery

carrier/method, will determine the transfection outcome. Therefore, in the following section, we will review different types

of exogenous nucleic acid cargo along with various non-viral nanocarriers used with MSCs.

Nucleic acids act as drugs that aim to treat and/or prevent countless intractable diseases, such as cancer, cardiovascular,

neurodegenerative diseases by adding, replacing, editing, or even inhibiting specific target genes or their products .

Currently, therapeutic nucleic acids could be roughly classified according to their different structures into DNA and RNA

drugs. Therefore, various therapeutics were developed and are now commercially available for various diseases

(summarized in table 1).

Table 1. FDA-approved RNA therapeutics for the treatment of human diseases in chronological order, adapted from 

.

Drug Name Drug
Class

Brand
Name Company Target Disease Mechanism

of Action
Year of
Approval

Current
Status

Fomivirsen ASO Vitravene Novartis Cytomegalovirus
retinitis

Binds to and
blocks

translation of
IE2 mRNA.

1998

Withdrawn
due to

decreased
need

Pegaptanib Aptamer Macugen OSI
Pharmaceuticals

Age-related macular
degeneration (wet

type)

Binds to and
blocks the

165 isoform
of VEGF.

2004 Continuous

Mipomersen ASO Kynamro Genzyme
Corporation

Homozygous familial
hypercholesterolemia

Binds to
ApoB mRNA
and induces

its
degradation
by RNase H.

2013
Discontinued
due to side

effects
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Drug Name Drug
Class

Brand
Name Company Target Disease Mechanism

of Action
Year of
Approval

Current
Status

Nusinersen ASO Spinraza

Cold Spring
Harbor

Laboratory and
Ionis

Pharmaceuticals

Spinal muscular
atrophy

Binds to
SMN2 mRNA
and alters its

splicing.

2016 Continuous

Eteplirsen ASO Exondys
51

Sarepta
Therapeutics,

Inc.

Duchenne muscular
dystrophy

Binds to
exon 51 and

alters
splicing of
dystrophin
pre-mRNA.

2016 Continuous

Patisiran siRNA Onpattro
Alnylam

Pharmaceuticals
Inc.

Polyneuropathy in
patients with

hereditary
transthyretin-

mediated
amyloidosis.

Binds to
transthyretin
(TTR) mRNA
to decrease

hepatic
production

of TTR
protein

2018 Continuous

Inotersen ASO Tegsedi Ionis
Pharmaceuticals

Nerve damage in
adults with hereditary

transthyretin-
mediated

amyloidosis.

Binds to TTR
mRNA and
induces its
degradation
by RNase H

2018 Continuous

Givosiran siRNA Givlaari
Alnylam

Pharmaceuticals
Inc.

Acute hepatic
porphyria

Reduces the
hepatic

production
of ALASI
protein
through

interference
with ALASI

mRNA.

2019 Continuous

Golodirsen ASO Vyondys
Sarepta

Therapeutics,
Inc.

Duchenne muscular
dystrophy

Binds to
exon 53 of
dystrophin

pre-mRNA to
alter

splicing.

2019 Continuous

Note: Antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs).

Despite such achievements, myriad challenges remain to be overcome before their impact on patient’s care is fully

understood. In this section, we have discussed some of the most popular nucleic acids used to transfect MSCs,

highlighting their advantages and disadvantages (Summarized inTable 2)

Nucleic Acid DNA/RNA Examples Pros Cons Ref

Plasmids DNA

pCMS-EGFP

pUNO1-

hBMP-7

Large DNA packaging

capacity.

Easy to handle. Stable

at RT for long periods

of time.

Efficient nuclear transport

is required.

Plasmid backbone

elements can induce

intracellular inflammation

and transgene silencing

Mini circles DNA

McCMV-

fLuc2A-EGFP

McCMV-

CXCR4

High safety profile.

Persistent transgene

expression (compared

to pDNA).

Efficient nuclear transport

is required.

Sustainable scale-up with

clinical-grade quality is

still needed.
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Nucleic Acid DNA/RNA Examples Pros Cons Ref

mRNA RNA
ΔLNGFR

mRNA

No need for nuclear

transport.

Higher transfection

efficiency (compared to

pDNA).

No risk of genome

integration.

Transient expression

Repeated dosing

required.

Oligonucleotides/
ASO DNA/RNA

PyNTTTTGT

ONs

Smurf1

GapmeR

Transient and specific

regulation of gene

expression.

No risk of genome

integration

They need delivery

carriers.

Natural ONs are

degraded by nucleases.

Binding to off-target RNA.

Inability to cross BBB.

Could be immunogenic.

Aptamers DNA/RNA

HM69

Seq3

High binding affinity to

target molecules.

Batch-to-batch

consistency. Small

sizes allowing them to

penetrate tissues.

Non-immunogenic.

Irrelevant interactions

with biomolecules in vivo.

Quick excretion via the

kidneys.

RNAi/siRNAs RNA

siRNA-Runx2

siRNA–REST

TOP2B_5

TOP2B_6

Transient and specific

regulation of gene

expression.

No risk of genome

integration.

They need delivery

carriers.

MiRNAs RNA

miR-133

agomir

miR-100–5p

miR-143–3p

Transient and specific

regulation of gene

expression.

No risk of genome

integration.

They need delivery

carriers.

Ribozymes and
Deoxy ribozymes DNA/RNA Rzpol1a1

Transient and specific

regulation of gene

expression.

No risk of genome

integration.

They need delivery

carriers.

Off-target effects.
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Nucleic Acid DNA/RNA Examples Pros Cons Ref

Short hairpin RNA
(shRNA) RNA

TIMP-1-

shRNA

shRNF2-1

shNRF2-2

Specific regulation of

gene expression.
Vector-dependent.

Table 2. A summary of nucleic acids used to transfect MSCs: The advantages and disadvantages.

 

Plasmid-based gene therapy was attempted to correct single-gene disorders. On a molecular level, plasmids are circular,

double-stranded DNA constructs varying in size from <1000 to >200 000 bp containing transgenes. Therefore, plasmid

design can dramatically influence transgene expression .  genes.

The decreased backbone size was shown to be directly correlated with the levels and extent of transgene expression in

mammalian cells . When compared to pDNA, Maria Florian et al., demonstrated that angiopoietin 1 (ANGPT1) encoded

in mcDNAs -transfected MSCs could attain notably higher and prolonged secretion levels of ANGPT1 protein, resulting in

superior therapeutic effects animals with acute lung injury . On the other side, Serra J and team reported insignificant

differences in transfection results in BM-MSCs with mcDNAs Efficient nuclear transport is still required to achieve notable

transfection efficiency .

Nevertheless, the protein expression takes place for a shorter duration, which demands repeated transfection. To this end,

BM-MSCs were transfected with mRNAs encoding several reprogramming factors (e.g., Oct4, Klf4, Sox2, cMyc, and

Lin28) resulting in the formation of iPSC colonies . Moreover, mRNA transfection is being used to simultaneously

express multiple proteins such as in the study of Wenbin Liao et al. Such breakthrough would not have been possible

without critical recent innovations in the production of high-quality mRNA as well as the development of safe and efficient

materials for in vivo delivery.

3. Applications of Engineered MSCs

As mentioned above, there are various approaches through which genetically modified MSCs can be applied to achieve

therapeutic impact in different clinical conditions. MSCs were used to deliver a myriad of growth factors , cytokines

, transcription factors , or even suicide gene  with various potential clinical purposes. Some of these

applications are reviewed next and summarized in Table 3.

Table 3. Applications of genetically modified MSCs in vivo.
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Delivery
System

Carrier Nucleic Acid

Cell Vehicles Application Model/Host Ref
Type Composition Vector Delivered

Gene/siRNA

Non-
viral

Liposomes Lipofectamine
Plus

Plasmid
DNA hTERT

MSC line
derived from
fetal porcine

pancreas

Hyperglycemia
Diabetic

model/Kunbai
strain mice

Polymer PEI Plasmid
DNA TRAIL BM-MSCs Melanoma Melanoma model/e

C57BL/6 mice

Polymer Chitosan Plasmid
DNA BMP-2 BM-MSCs Bone regeneration Calvarial defect

model/Rats

Polymer PEI Plasmid
DNA BMP-2

BM-MSCs
deriver MVs
within gene-

activated
scaffold

(DBM/MVs-
PEI/phBMP2)

Bone regeneration

Femoral condylar
defect/New

Zealand white
rabbits

Polymer Alginate GAM Plasmid
DNA BMP-2 Rat BM-

MSCs Bone regeneration

Orthotopic spinous
process

defect/Fischer 344
inbred rats

Polymer LPEI Plasmid
DNA VEGF BM-MSCs Myocardial infarction MI model/SD rats

Polymer Cationized
pullulan

Plasmid
DNA

Suicide
gene (CMV-

TK)

Rat BM-
MSCs Melanoma

Pulmonary
melanoma
metastasis

model/C57BL6
mice

Polymer LPEI Plasmid
DNA CDY::UPRT AT-MSCs GDEPT: Chemo-

resistant glioblastoma

Temozolomide
resistant U-251MG

cells/Nude mice

Polymers PEI-PLGA

Plasmid
DNA
and

siRNA

coSOX9-
pDNA/Cbfa-

1-siRNA

hMSCs
encapsulated

in fibrin
hydrogels

Chondrogenic
differentiation Nude BALB/c mice

Polymers PLL-PEI Plasmid
DNA

HSV-TK and
TRAIL rMSCs Glioblastoma Glioma model/SD

rats

Polymeric
NPs BA-PEI Plasmid

DNA VEGF BM-MSCs Myocardial infarction MI model/SD rats

Plasmid-
activated
scaffolds

Chitosan-
gelatin

andnHA

Plasmid
DNA

TGF-β1 and
BMP-2 BM-MSCs

Regeneration of
articular cartilage and

subchondral bone

Knee
osteochondral

defect
model/Rabbits

nHA dual
gene-

activated
scaffold

nHA and PEI Plasmid
DNA

BMP-2 and
VEGF rMSCs Bone regeneration

Critical-sized
cranial bone defect

model/Rats

Peptide
conjugated

NPs

Cationic
AuNPs and

PEP

Plasmid
DNA VEGF Rat BM-

MSCs

Antimicrobial and
wound healing

properties

Infected full
thickness skin

defect model/Mice

®
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Note: 4HP4: tetrameric form of cell-permeable peptide; CPP: cell-permeable peptide; HSV: herpes simplex virus; tTATop-

BMP-2: tetracycline transactivator and BMP-2 cDNAs; BA-PEI: bile acid-modified polyethyleneimine; PMAA:

polymethacrylate acid; CMV: cytomegalovirus; AT-MSCs: adipose tissue-derived MSCs; HIF-1 α: hypoxia-inducible factor-
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