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The recruitment of new vasculature via angiogenesis is a critical component of tumor development, which
fundamentally influences tumor growth and response to treatment. The characterization of tumor-induced

angiogenesis via mathematical models could enable approaches to forecast tumor response and improve patient

care.
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| 1. Introduction

In the early stages of tumor growth, a small population of tumor cells is supported by existing tissue vasculature
and the diffusion of nutrients through the extravascular space. As this small population of tumor cells continues to
grow, it may eventually reach a size where the diffusion of nutrients from existing vasculature is insufficient to
support continued growth. Through the process of angiogenesis, new blood vessels are recruited from nearby
vasculature to provide the crucial infrastructure needed to sustain further expansion of the tumor . These three
key points inform the foundation of many mathematical models of angiogenesis and arose from the seminal work
on tumor angiogenesis by Folkman & and others B4 over the past half a century. Additional studies on
angiogenic signaling B8 and vasculature properties 44 have also greatly influenced the development of a
mathematical theory on angiogenesis. One notable observation was that compared to healthy appearing
vasculature, tumor-associated vasculature has substantial structural and functional abnormalities characterized by
non-hierarchical vessel networks, heterogeneous blood flow, and heterogeneous permeability 4. These
irregularities significantly influence the delivery of nutrients and removal of waste, while also having substantial
implications on systemic and radiation therapy [&l.

Quantitative and time-resolved imaging approaches, such as confocal imaging, photoacoustic imaging, and
magnetic resonance imaging (MRI), could provide the necessary data to initialize, calibrate, and validate models of
angiogenesis. Specifically, time-resolved imaging techniques of the vasculature have matured to the point where

they can define or estimate subject-specific structural (e.g., vessel order and location) and functional (e.g., vessel
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permeability, blood flow) model parameters that would enable in silico investigations of tumor and vasculature

dynamics .

The mathematical modeling of tumor angiogenesis at the cell scale has developed into a rich literature over the last
few decades WYLLIZISN14]1S] These models aim to give a rigorous mathematical description of tumor
angiogenesis to enable the systematic investigation of the underlying biology that dictates vascular sprouting,
perfusion, and response to therapy. By employing such models, it is possible to simulate and test scenarios in silico
that are not easily tested experimentally. For example, comparing the limitless number of therapeutic regimens that
can be constructed with varying dosing schedules and concentrations is experimentally intractable, but with a

mathematical model these can be simulated and analyzed to select the optimal regimen [28],

| 2. Experimental Techniques across Scales

Figure 1 summarizes the cell to tissue scale approaches for imaging experiments, while Table 1 lists the imaging

techniques and the literature that integrates those techniques with mathematical theory at the cell and tissue scale.
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Figure 1. Overview of cell to tissue scale imaging. Experimental platforms from the cell to tissue scales consist of
cell culture (to investigate cell dynamics), microfluidics (a perfused cell culture platform to observe angiogenesis),
skin fold window chambers (an in vivo platform for optical imaging), and small animal or human whole organ and
body imaging (for in vivo studies). Imaging techniques (purple bars) vary across spatial and temporal scales. In
vitro imaging consists primarily of the microscopies (e.g., confocal, multiphoton). In vivo imaging is achievable with
all the imaging technigues shown above; however, there are limitations in the penetration depth for microscopy and
photoacoustic imaging. Magnetic resonance imaging (MRI), positron emission tomography (PET), and computed
tomography (CT) are primarily in vivo techniques capable of whole animal or human imaging. Whole animal or

body imaging is feasible with microCT, though it is typically used for whole organ or ex vivo imaging.

Table 1. Imaging techniques for visualizing vasculature and angiogenesis at cell scale and tissue scale.

i Uses in
M li | M remen -
— Scale easurement Literature
Microscopy (confocal, multiphoton, optical Cell to Vascular structure, individual cell [A7][18][19][20]
projection tomography, histology imaging) tissue types, vessel porosity, flow (21]22]
Photoacoustic imaging Qell to Vascular structgre, blood [23]124]
tissue oxygenation
Angiography (X-ray, CT, MRI) Tissue Vascular structure [25][26][27](28]
i ili [16][29][30][31]
Dynamic contrast-enhanced MRI or CT Tissue P, permeab_lhty, blood 32]
volume fraction
PET Tissue Perfusion, permeab_lllty, blood [27]128]
volume fraction
microCT Tissue Vascular structure [25][26][27]28]

2.1. Quantitative Techniques for Observing Tumor Vasculature and Angiogenesis at
the Cellular Scale

At the cellular scale, microscopy is the dominant imaging technique for providing quantitative measurements of
tumor vasculature with a spatial resolution on the order of microns. Confocal microscopy, combined with
immunofluorescence staining, has been used to acquire high resolution, temporally resolved images of vascular
structure in angiogenic and vasculogenic assays [B3I3435] This technology allows for analyzing in vitro spatial
distributions of fluorescently labeled cell lines and can be coupled with fluorescing microspheres to investigate
vascular integrity, enabling the integration of quantitative fluorescence measurements with mathematical modeling.
Furthermore, confocal microscopy has also been utilized in vivo to investigate functional microcirculation B8 in
tumor-associated vasculature, the effects of radiotherapy 2 on neovasculature, and the oxygen distribution 28129
in dorsal skin fold chambers 49, While intravital microscopy provides a high-resolution longitudinal analysis in vivo,

the chamber may alter the tumor-vasculature dynamics and it is fundamentally limited in the length of study
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(generally 2-3 weeks), and the number of imaging time points. Multiphoton microscopy “, in comparison to
confocal microscopy, has improved depth penetration and confines excitation to the focal plane of the lens, thereby
decreasing the photodamage to the tissue. For many biological applications, tissue depths of ~500 microns can be

imaged over time 411,

In addition to microscopy, photoacoustic imaging offers high spatial resolution (10-100 microns) while also being

able to reach tissue penetration depths of around 4-10 cm [42]143],

2.2. Quantitative Techniques for Observing Tumor Vasculature and Angiogenesis at
the Tissue Scale

Ex vivo and in vivo imaging play a central role in understanding the morphology and function of tumor vasculature
and angiogenesis. In particular, ex vivo imaging techniques, including histology imaging 44 and micro-CT [421[25]126]
can quantify tumor microvasculature and angiogenesis on excised tissue specimens and serve as the gold
standard measurement. Less invasive observations of tumor-associated vasculature can now be achieved thanks
to the development of in vivo imaging techniques 8, such as x-ray 44 and computed tomography (CT) 48141501
positron emission tomography (PET) 2152l MR| H9B3IB4IESIS6IE7IE8I59 and optical imaging BB, There are two
main classes of imaging techniques applied to studying tumor-associated vasculature: (1) angiography, which is a
technique used to visualize the vasculature structure, and (2) functional techniques used to quantify the properties
of the tissue and vasculature. In conventional planar x-ray angiography #Z, the patient is catheterized so that an
iodinated contrast agent can be administered intravenously and then observed with fluoroscopy, thereby enabling
the observation of the vascular architecture. CT angiography is an extension of x-ray angiography that enables the
visualization of vessel structures in 3D. CT angiography has been commonly used to identify the location and
anatomy of tumor-associated vessels (especially for pancreatic tumors), which plays a valuable role on diagnosis
and the management of chemotherapy and surgery 6263164 Magnetic resonance angiography (MRA) is an
alternative approach that does not use ionizing radiation and can be used to visualize blood vessels, especially
large arteries and veins 22l MRA techniques aim at enhancing the contrast between blood vessels and the
background tissue based on either the effects of blood flow on MR signal or the injection of exogenous contrast
agents, thereby allowing for the quantification of several morphological characteristics of the vasculature, such as
vessel tortuosity, density, diameter, and branching patterns as well as feeding and draining vessels 631661,

3. Approaches for Modeling Tumor Vasculature at the Cell
Scale

3.1. Mathematical Modeling of Tumor Vasculature and Angiogenesis at the Cell
Scale

Mathematical models of tumor angiogenesis vary in the extent of biological detail they characterize and can be
summarized as discrete (treating endothelial cells and vasculature as individual objects), continuous (treating

endothelial cells or vasculature as concentrations), or hybrid (combining methodology from both discrete and
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continuum theory) models. Discrete models may track all endothelial cells as individual agents, or simply tip
endothelial cells or TECs (the cells responsible for directed migration in response to chemical stimuli). In discrete
models, the vasculature changes through time based on sets of rules dictating cell behavior (e.g., whether a cell
will divide or migrate). Continuum models are based on ordinary or partial differential equations (PDES) that govern
the behavior of the endothelial cells through time. Hybrid models couple these two theories by, for example,
discretely characterizing the TECs and continuously modeling the overall vessel morphology through a PDE. We
note that while hybrid models could refer to models that have a discrete and continuous component within the
modeling framework (which would dictate a hybrid modeling approach), here, we define hybrid as utilizing both
discrete and continuous methodologies specifically applied to model the vasculature. The reader is invited to refer
to Figure 2 throughout this section as it shows examples of these three modeling approaches. All three modeling
approaches are typically used to study the migration and development of tumor-associated vasculature in response
to external stimuli (e.g., chemical, mechanical) in conjunction with a model of tumor growth. A simulation of the
process of angiogenesis typically begins with the stimulation of endothelial cells by tumor angiogenic factors (TAF,
a continuous field of pro-angiogenic proteins secreted by tumor cells) that are either explicitly coupled to a model of
tumor cell growth or assumed to have a fixed initial distribution. Directed movement of endothelial cells is then
influenced by chemical gradients (i.e., TAF), gradients in fibronectin or insoluble extra-cellular matrix (ECM) (i.e.,

haptotaxis), and mechanical cues (i.e., mechanotaxis) 28],
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Figure 2. Overview of cell-scale models of angiogenesis. (Panels a and b) present a hypothetical biological

scenario in which new vasculature is recruited via angiogenesis in response to tumor angiogenic factors (TAF)
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released by tumor cells. Continuum models (panel ¢) describe this phenomenon in terms of endothelial cell
densities and the concentration of TAF. Partial differential equations (PDES) provide a continuous representation of
endothelial densities and often describe the spatial and temporal evolution via diffusion, haptotaxis, and
chemotaxis terms. Alternatively, discrete models (panel d) can be used to explicitly describe the movement and
behavior of each individual endothelial cell. Hybrid models (panel e) generally combine both discrete and

continuum approaches to model TEC movement and endothelial cell densities, respectively, in response to TAF.

The continuum, discrete, and hybrid modeling approaches above provide complementary information on
angiogenesis, and the choice of modeling approach is dependent on the desired goal or quantity of interest from
the model itself. The primary advantage of using a continuous representation of tumor vasculature is the low
computational cost, and the ability to utilize sophisticated parallel solvers for continuum equations. However, a
continuum approach lacks the ability to resolve local key features of the changing vasculature including, for
example, the activation of TECs (the cell responsible for directed migration) and the competition for the TEC
phenotype among other TECs and neighboring endothelial cells. Discrete models can resolve these local features
but become computationally expensive as the number of cells increase. Hybrid models balance both approaches
and produce robust and sophisticated vascular fields, but often require complex numerical schemes to solve them.
All three modeling approaches have been shown to qualitatively describe the dynamics of tumor angiogenesis;
however, many parameters in these models are often assigned values without any experimental validation. This
leads to models matching qualitative properties of angiogenesis such as TEC activation, sprout elongation,
formation of anastomosis, and establishing blood flow, but have difficulty predicting actual experimental outcomes,
since parameters are freely assigned. Recent advances, though, indicate that time-resolved quantitative imaging
can provide the data necessary to inform and calibrate model parameters specific to the vasculature network under

investigation.

3.2. Integrating Theory and Experimental Data at the Cellular Scale

Microfluidic devices are one promising platform that enable the culturing of tumor and/or endothelial cells in 2D or
3D, while simultaneously incorporating biochemical gradients, fluid flow, and mechanical signaling B9, These
devices can play a powerful role in the study of tumor angiogenesis and vasculature by providing a controlled,
repeatable experimental platform in vitro that can isolate specific processes that are not easily studied individually
in vivo. Many microfluidic devices are widely reproducible and allow for a systematic investigation of

vasculogenesis 2RI gngiogenesis RIIEIITIT8] and response to anti-angiogenic therapies 2,

While computational advances in discrete, continuum, and hybrid modeling along with experimental advances in
microscopy and microfluidic devices have largely bridged this gap, significant progress in the rigorous integration of
mathematical models of angiogenesis and experimental observations have yet to be realized at the cell scale.
Phillips et al. B7[21E9 haye proposed integrating confocal microscopy data from an in vitro vascularized tumor
platform [Z8 with an agent-based mathematical model of tumor angiogenesis (2. In their framework, time-resolved
confocal measurements of individual angiogenic sprouts are used to calibrate and validate a multiscale agent-

based model. The agent-based model captures the dynamics of endothelial cells. Each agent represents a single
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endothelial cell that can be in one of the following phenotypes: tip, stalk, or phalanx cell B, Tumor cells release
TAF, which is modeled by a reaction-diffusion equation and is responsible for guiding the movement and
phenotypic transitions of endothelial cells. In their preliminary study 21, they calibrated the endothelial cell cycle
duration and TEC velocity and used these parameters to estimate the total sprout length at the end of the imaging
experiment. Phillips et al. 21 observed a 12.5% error in sprout length between the model and the image
measurement. Future efforts are aimed at improving the spatial agreement between the model and the
measurements. Table 2 summarizes the literature reviewed in this section and how the selected models are

integrated with imaging data.

Table 2. Examples of studies integrating imaging data with mathematical modeling at the cell scale.

M lin
Paper A::rl:)ac% Scale Use of Data
Perfahl 2011 18 Discrete tiigﬂ-e Microscopy used to initialize vasculature network
XU 2020 (23] Hvbrid Cell- Photoacoustic imaging was used to initialize vasculature
y tissue network
Stepanova 2021 119 Hvbrid Cell Agent-based model was calibrated against in vitro
P y assays
Phillips 2019,2020 Discrete Cell Time-resolved microscopy was used to initialize and
[17][21][80]

calibrate an agent-based model

4. Approaches for Modeling Tumor Vasculature and
Angiogenesis at the Tissue Scale

4.1. Mathematical Modeling of Tumor Vasculature and Angiogenesis at the Tissue
Scale

4.1.1. Models of Evolving Tumor Vascular Network

The first area Figure 4 of focus (panel a in Figure 3) bridges the cell to tissue scale by modeling the formation and
evolution of tumor-induced angiogenic networks which are predominately modeled using a discrete (lattice-based
and lattice-free). Discrete approaches typically model individual TEC movement, while continuous approaches
model the change in a spatially averaged, continuous variable (e.g., vasculature density or vascular volume
fraction). Hybrid approaches combine the discrete and continuous approaches to provide a spatially resolved
vasculature network, which can be mapped to a continuous domain to facilitate interaction with continuous
elements of their mathematical modeling system (e.g., TAF or nutrients). One representative example by Frieboes

et al. 87 applies a hybrid approach to describe angiogenesis coupled to tumor growth.
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Figure 3. Overview of tissue-scale models of angiogenesis and vasculature. There are four main approaches to
modeling tumor-induced angiogenesis and vasculature at the tissue scale level. (Panel a) provides an example of a
discrete modeling approach B2l ysed to describe the evolving geometry of tumor vasculature in response to
tumor growth. This simulation employs a 3D continuous multi-species tumor growth model coupled to a 1D discrete
model of angiogenesis. The tissue domain initially features a small spherical tumor core, which grows in response
to the changing vasculature network. The colors in the network show the nutrient volume fraction. (Panel b)
displays how the function of existing tumor vasculature in the breast can be studied with computational fluid
dynamics BY to estimate hemodynamic properties of the vascular network. In (panel ¢), diffusion weighted (DW-)
and DCE-MRI acquired in a murine brain tumor model (C6 glioma) are used to provide tumor volume fraction and
blood volume fraction estimates to initialize and calibrate a model of tumor-induced angiogenesis. The model
derived estimates of tumor and blood volume fraction are overlaid on an axial T,-weighted MRI through the center
slice of the tumor. A coupled set of PDEs 29 are used to describe the proliferation, diffusion and death of tumor
cells and the angiogenesis, diffusion, and regression of the vasculature. In (panel d), estimates of tissue perfusion
in the breast derived from quantitative imaging are coupled with a mathematical model of drug delivery 32 and
tumor growth to observe the effect of tumor vasculature on drug distribution and tumor response to treatment. Both

the left and right images in (panel d) show quantitative maps of DCE-MRI parameters or drug concentration
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overlaid on an anatomical image acquired in the same plane. The right drug concentration map is an enlargement

of the computational domain.

4.1.2. Models of Blood Flow and Blood-Driven Transport

The second area (panel b in Figure 4) focuses on estimating blood flow and transport within the vasculature and
through the interstitial space. In discrete vascular models both the pre-existing and the angiogenic vasculature are
frequently approximated by a 1D network of connected straight cylinders with the flow in each cylinder simulated
using the 1D Poiseuille law [BA67I68IE2][83][B4][BS]86IB7] | continuous vascular flow models the vasculature is
described with a spatially averaged, continuous variable (e.g., vasculature density or vascular volume fraction), and
the transport of the substance of interest (e.g., drug or nutrient) through the interstitial space is described with a
reaction-diffusion-advection model [B8IBRAIOL describing the delivery, diffusion, and the transport of that substance
due to bulk fluid flow. Hybrid vascular flow models R84 combine the discrete and continuum approaches;
capillaries and smaller vessels are approximated with a continuum approach, whereas the large vessels are

explicitly retained, and their flow is simulated as in discrete models.

4.1.3. Models of Tumor and Vasculature Growth and Response to Therapy

The third and fourth areas focus on describing the mechanisms underlying the complex interplay between tumor
growth and vasculature in the absence of treatment (panel ¢ in Figure 4) [22[23I[67I[68][95][83[88I[BI] and during

treatment (panel d in Figure 4).

At the tissue scale, models of tumor cell dynamics are typically captured in a continuous fashion by means of a
PDE system 281713811991 Thjs is most commonly achieved through either reaction-diffusion-advection equations or
phase-field equations. Reaction-diffusion-advection equations describe the spatiotemporal dynamics of cell density
(or tumor volume fraction) as a combination of random movement of cells via diffusion, directed movement of cells

via advection, and reaction terms representing (for example) tumor cell proliferation, apoptosis, and cytotoxic
effects due to treatments [221[32][92][88][89][31][98]

4.2. Integrating Theory and Experimental Data at the Tissue Scale

Recent studies have proposed several promising approaches for integrating mathematical models with
experimental imaging data at both the pre-clinical and clinical levels. The reader is referred to Table 3 for a

summary of these approaches and the type of data used to inform the model.

Table 3. Examples of studies integrating imaging data with mathematical modeling at the tissue scale.

Paper Al Gl Scale Use of Data
Approach
d’Esposito 2018 . . Whole tumor imaging was used to initialize vasculature
122] Continuum Tissue

network, perfusion model validated against DCE-MRI
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Paper Modeling Scale Use of Data
p
Approach
Stamatelos 2019 . . Whole tumor microscopy was used to initialize tumor
126] Continuum Tissue
vasculature
Adhikarla 2012 CT data was used to initialize vasculature network, model
2016 [271128] ' Discrete Tissue parameters were calibrated against PET measures of
hypoxia
Wu 2020 BJ Continuum Tissue DCE-MRI used to initialize breast vasculature
Cell- PET estimates of oxygenation and proliferation were used
Titz 2012 290 Continuum Tissue to initialize tumor simulation and calibrate model
parameters
Hormuth . . . . .
2019.2020 29131 Continuum Tissue Time-resolved DCE-MRI to calibrate and validate models
Jarrett{i?{%_]f, 2020 Continuum Tissue Time-resolved DCE-MRI used to estimate drug delivery

4.2.1. Applications to Estimate Perfusion and Delivery

Recent studies have provided important foundations on integrating imaging measurements of tumor-associated
vasculature with mathematical models, which can provide a means to rigorously understand and predict tumor
blood flow, interstitial transport, and angiogenesis. For example, d’Esposito et al. 22 performed fluorescence
imaging to visualize tumor microvasculature in fixed tumor samples to inform a model of tumor perfusion. The
segmented microvasculature was used to initialize the vasculature network for a computational fluid dynamic
(CFD) model describing steady-state blood and interstitial flow. Using the CFD model, the authors estimated
interstitial fluid pressure and velocity, blood flow and pressure, and the delivery of a widely used MRI contrast
agent. Their CFD model predicted a heterogeneous spatial distribution of the contrast agent, which was validated
against in vivo DCE-MRI.

4.2.2. Applications to Treatment Response

The treatment efficacy of systemic therapies administered intravenously relies on the delivery of drugs through the
bloodstream, which is highly dependent on the vascular structure and associated perfusion. Additionally, multiple
pre-clinical and clinical studies have shown that anti-VEGF therapy changes tumor vasculature towards a more
“mature” or “normal” phenotype, thereby improving the delivery and efficacy of concomitant chemotherapies 194,
Therefore, the use of data-driven modeling to evaluate angiogenesis is a promising means to assess and predict
tumor response to therapies. The approach proposed by Titz et al. 223 employed a continuum model to simulate
tumor and vasculature responses to anti-angiogenic therapy. Pre-treatment PET measurements of cellular
proliferation and hypoxia were used to initialize the simulation and estimate model parameters. In their simulations,

hypoxic tumors released TAF or VEGF to stimulate endothelial cell proliferation and an increase in microvessel
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density. The estimated microvessel density was used to estimate the average voxel oxygenation. The model
parameters describing cellular and vascular proliferation were adjusted to minimize the error between the
measured oxygenation from PET and the model-estimated oxygenation. Using this modeling framework, the
authors estimated the response to anti-angiogenic therapy and demonstrated that anti-angiogenic therapy could be
personalized based on the initial levels of VEGF within the tumor.

| 5. Conclusions

In summary, the integration of biologically-based mathematical modeling of tumor vasculature and angiogenesis
with time-resolved experimental data promises to enable further understandings of angiogenesis from the cell to
tissue scales. Models validated by experimental data, could then be used to generate testable hypotheses or
predict the spatial-temporal evolution of the tumor and its associated vasculature. Furthermore, at the clinical level
mathematical models initialized and constrained by quantitative imaging techniques could produce timely and
actionable forecasts of tumor growth and response that could help guide clinical decisions and fundamentally
improve patient care.
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