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Somaclonal variation includes genetic or epigenetic changes exhibited between clonal regenerants and their

corresponding donor plants derived via in vitro tissue cultures (A. Leva, L.M.R. Rinaldi, in Encyclopedia of Applied

Plant Sciences (Second Edition), 2017). It usually assumes that the changes are being transmitted during a

generative cycle. However, in some cases, to stress the fact that not all changes are either not analyzed in the

progeny or may not be sexually transmitted, the tissue culture-induced variation seems to reflect better the issue

(Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.) Bednarek, PT., Orłowska, R.,

Koebner, RMD., Zimny, J. 2007 BMC Plant Biology 7 (1), 1-9).

plant tissue cultures  signaling pathways

1. Introduction

Tissue culture-induced variation (TCIV) is a well-established phenomenon of any changes affecting regenerants

phenotype or genotype during in vitro plant regeneration . If the changes are stably inherited via the

generative cycle, it is usually called somaclonal variation (SV) . However, the TCIV and SV terms are often

used mutually . TCIV may be pronounced at the morphological , biochemical , genetic  and epigenetic 

levels, which do not necessarily overlap . Possibly the most investigated level is based on DNA markers.

The studies of molecular aspects of TCIV started at the beginning of the 1980s . The development of the

restriction fragment length polymorphism (RFLP)  and the randomly amplified polymorphic DNA (RAPD) 

techniques (Table 1) resulted in a burst of experimental data suggesting that even using anther culture, plant

regeneration was subjected to numerous mutations such as single nucleotide polymorphisms (SNPs) . Some

studies suggested that variation was due to the so-called pre-existing variation , the others addressed

mutations to the activation of transposable elements  due to DNA methylation pattern alternations . For a long

time, the origin of changes was not apparent. It was speculated that they might have come from the degradation of

the cells during tissue cultures , the elevated production of reactive oxygen species (ROS) , due to stressful

conditions . The degradation hypothesis claimed that cell death in culture under stress and programmed cell

death leads to secondary metabolites (pigments, tannins). Their release into culture can induce somaclonal

variation in an unspecified way . It was speculated that the callus phase and indirect embryogenesis could have

contributed to the phenomenon . For about a decade, it was thought that studies on TCIV were deficient.

However, the development of new molecular tools and progress in epigenetics led to the revision of previous data

and pushed a deeper understanding of the phenomenon.

[1][2][3][4]

[5][6]

[7] [8] [9] [10] [11]

[12]

[13][14][15]

[16] [17]

[18]

[19][20]

[21] [22]

[23] [24]

[25]

[23]

[26]



Vitro Tissue Culture-Induced Variation | Encyclopedia.pub

https://encyclopedia.pub/entry/12854 2/25

Table 1. The arrangement of molecular techniques used to study TCIV.

The introduction of the amplified fragment length polymorphism (AFLP) approach , followed by the methylation-

sensitive amplified polymorphism (MSAP) one , allowed studies of DNA methylation changes addressed to in

vitro tissue culture plant regeneration . Although that changes are frequent but may vary in a wide spectrum,

from 0.07%  to 52% . While the MSAP approach was productive, it could identify only DNA methylation

changes related to CG and CHG sequence contexts . Moreover, the ways to quantify changes used distinct

algorithms  that might have differed from study to study , making a comparison of results somewhat tricky.

Thus, the semi-quantitative MSAP approach, allowing for quantifying DNA methylation changes, was suggested to

overcome the limitation . However, studies on sequence variation required the utilization of additional marker

techniques. Consequently, another AFLP based technique, the so-called methylation-sensitive AFLP (metAFLP)

approach, was developed , allowing quantification of sequence and DNA methylation changes during a single

experiment. Further advances in the technique showed that one might study not only CG and CHG but also the

CHH methylation context, an essential tool in studies on cereals .

The development of the new generation sequencing (NGS) opened innovative opportunities. The diversity arrays

technology methylation analysis (DArTseqMet) techniques permitted for identifying a large number of markers that

could be employed in quantification procedures evaluated for the semiquantitative MSAP approach . MethylRAD

 or MethylSeq  are the other alternatives. The MethylSeq method is an NGS variant of the bisulfite-based

sequencing approach. It could be used to study different types of genomic DNA methylation, but its application

requires at least 10X coverage. The MethylRAD approach uses Mrr-like enzymes to collect 32-bp methylated DNA

fragments from the whole genome for high-throughput sequencing. It allows for de novo methylation analysis using

low DNA input. The two approaches have incredible potential in DNA methylome studies; however, they were not

yet used in tissue culture studies.

All the techniques mentioned above were exploited in studies on the whole genome. When it was of value to

investigate DNA methylation pattern change of a specific sequence, the bisulfite approach was recommended 

. It allowed the establishment of the extent to which the CG, CHG, and CHH sequences were methylated in the

genome . Thus, the tools to study molecular aspects of the TCIV were established. Moreover, by that time, the

genetic model of the studies was also evaluated . It became apparent that studies on TCIV should start from a

Abiotic Stress Factor Plant

Starvation/Heat Sucrose-free medium, 25 °C, 33 °C Wheat, tobacco 

Osmotic Mannitol solutions Barley 

Heat 41 °C Rapeseed 

Cold 4 °C Pepper 

Cold/Heat 4 °C/32 °C Rye 
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well-defined, preferentially homozygous double haploid plant that served as a donor of tissue for the regenerants

subjected to further analysis. Utilizing specific plant materials and sophisticated molecular marker techniques, TCIV

was studied in barley , triticale , Polyscias filicifolia , and Gentiana pannonica Scop. . It was shown that

the phenomenon is common to plants  and that at least some DNA methylation changes could be

transmitted to the progeny . Furthermore, DNA methylation changes affecting regenerants may require

several generative cycles to be stabilized . Using a modification of the metAFLP approach that utilized primers

directed towards TEs, their putative role in sequence variation was demonstrated . However, the mechanisms

of the TCIV are still being discussed.

It is becoming understood that analyses of DNA methylation changes affecting tissue culture due to plant

regeneration are insufficient to have an image of the phenomenon. Interdisciplinary studies are needed to have

species-specific models describing consecutive steps required to change the cell fate towards somatic

development. In this context, studies of the cell wall, cell membrane, subintinal layer, their components, and the

way signals transmitting stresses are involved in the process are needed. An interesting approach to study the role

of the cell wall or biochemical pathways affected by in vitro tissue culture is attenuated total reflectance Fourier

transform infrared (ATR-FTIR) spectroscopy , which allows for the identification of putative cell wall

components  or biochemical pathways  participating in sensing stresses. It was documented that β-glucans

being built of glucose units , and probably present in the subintinal layer of some microspores , maybe

sources of glucose for new anther-culture-derived regenerants . Furthermore, stressful conditions might

influence DNA methylation, probably disturbing the methionine cycle . The role of copper and silver ions in

sequence variation  and green plant development  was also documented in barley regenerants derived via

anther culture. Similarly, in embryo-derived regenerants of barley copper ions participated in sequence variation,

possibly via modification of methylated sequences . The respective relationships could be evaluated using

mediation and moderation analyses  applied to DNA methylation changes and the ATR-FTIR spectroscopy data.

Such results could be used in structural equation modeling (SEM), resulting in a deeper insight into the

phenomenon leading towards its practical applications. However, due to limited sample size, SEM analysis

allowing construction of an in vitro plant regeneration either via andro- or embryogenesis was not evaluated. If not

the most substantial, a further limitation is the understanding of the role of the way the cell senses and transmits

stresses leading towards TCIV.

2. Stresses and Their Role in Plant Regeneration through
Tissue Culture In Vitro

It is assumed that inductive stress treatment is necessary to initiate the cell reprogramming process required for

the microspore to switch from gametophytic to embryogenic fate. The stress treatment needed to switch the

developmental fate of microspores depends on the plant species and the species genotype. Osmotic, starvation,

cold, heat, and many other stresses are employed to initiate andro- and embryogenesis  (Table 2).

Table 2. Summation of stresses that efficiently switch the developmental fate of microspores.
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Three phases of embryogenic development due to androgenesis could be distinguished. The first one reflects the

acquisition of embryogenic potential as the reaction to stress. At this stage, which lasts about three days,

repression of gametophytic development and dedifferentiation of the cells occurs. The second stage follows the

induction and culture initiation step. The microspores divide and produce multicellular structures persisting within

the microspore wall (exine) , indicating the initiation of embryogenesis. This stage, at least in barley, may take

two days. Next, the exine breaks down, and embryos follow a similar zygotic embryogenesis pathway through

globular, heart, torpedo, and cotyledonary embryos. The formation of tissue culture structures reflects the third

phase of embryogenic development that begins around the 21st day of in vitro tissue cultures . Interestingly, the

third phase of embryogenic development corresponds to the point when under increased copper concentration

present in induction medium, regeneration of new barley plants via anther culture results in the highest output .

In the model system of Hordeum vulgare (barley), the inductive cold stress (4 °C) is applied, whereas, in Brassica

napus, 32 °C is used to initiate a switch from gameto- to sporophytic path. Stress-related heat-shock proteins

(HSP70 and HSP90) were detected in microspore embryogenesis cultures of Brassica napus and Capsicum

annum due to cold treatment . Thus, a protective role for the chaperones was suggested; however, their role in

microspore embryogenesis is not clear. Low temperatures may alter endogenous ethylene (ET) levels enhancing

tolerance with higher ET concentrations .

During reprogramming stages, induced stresses result in increased cell death and oxidative stress. At this point,

ROS arise in excess and are accumulated . However, in the case of Medicago sativa leaf protoplasts, the

application of oxidative stress-inducing agents resulted in acceleration of cell cycle re-entry that was accompanied

by a lower level of ROS accumulation . The equilibrium between ROS-scavenging and ROS-producing

mechanisms administrates the cell’s level of damage and oxidative stress. Several enzymes of the antioxidative

machinery of the cell increase their activity in microspore cultures. These stress-related proteins may have a

protective role .

Abiotic stress factors may impact auxin homeostasis  probably resulting in the induction of somatic

embryogenesis . While microspore culture does not require exogenous auxin (2,4-dichlorophenoxyacetic

acid), endogenously, the phytohormone may participate in microspore reprogramming in Brassica napus and in

vitro embryo formation . It was shown that induction of microspore embryogenesis resulted in de novo

Abiotic Stress Factor Plant

Starvation/Heat Sucrose-free medium, 25 °C, 33 °C Wheat, tobacco 

Osmotic Mannitol solutions Barley 

Heat 41 °C Rapeseed 

Cold 4 °C Pepper 

Cold/Heat 4 °C/32 °C Rye 
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endogenous auxin biosynthesis and accumulation of indole-3-acetic acid (responsible for embryo patterning,

polarization, and differentiation) in pre-embryo cells starting from the first embryogenic divisions . Auxin activity,

biosynthesis, and transport are essential for stress-induced microspore embryogenesis. There is a link between

auxin biosynthesis, its perception, transport, gene expression, signaling, and non-transcriptional responses;

however, the exact mechanisms remain elusive . The other hormone vital for plant cells is cytokinin that

acts antagonistically to auxin. Cytokinin participates in cell growth and may control the early stages of somatic

embryogenesis . Spatiotemporal localization of cytokinin and auxin responses during microspore

embryogenesis was suggested . However, data concerning the presence of endogenous cytokinin in microspore

embryogenesis was not evidenced.

It is worth mentioning that stress conditions may induce or impact autophagy, a significant pathway for recycling

cell materials . Autophagy may promote plant cell survival under starvation and stress conditions .

Moreover, excretion of cytoplasmic material (occasionally containing whole organelles) via single membrane-bound

autophagic bodies and those deposited in the cell wall (remnants from the digestion of cytoplasmic organelles) of

embryogenic microspores in between the cell wall of embryogenic microspores and the plasma membrane was

observed . Some of the autophagosomes were transported out of the cell, creating extracytoplasmic fibrillar and

membranous material deposits It was shown that embryogenic microspores are associated with autophagy and

excretion of the removed material . Thus, autophagy is a kind of cytoplasmic cleaning, whereas excretion is a

mechanism of avoiding unnecessary vacuolar system growth . The excretion was essential for proper

microspore embryogenesis; however, in some cases, the material was redirected to the cell , possibly implying

‘recycling’ of the materials for cellular processes. It should also be mentioned that autophagy can involve

converting the lytic vacuole to a storage one .

The connection between ROS and autophagy in plants was suggested . In barley, the activation of autophagy

after inductive stress at 4 °C with upregulation of HvATG5 and HvATG6 genes, and a rise in the number of

autophagosomes was reported . Autophagy is activated and involved in cell death with the participation of

cathepsins the proteases that degrade proteins during stress-induced microspore embryogenesis in barley . It

was also demonstrated that stress treatment of Brassica napus also resulted in induction of autophagy  in

parallel to cysteine-dependent proteases (metacaspase) involved in programmed cell death, stress, and cell

proliferation , and gene expression . Interestingly, application of agents directed towards ROS (MnCl ),

autophagy [3-methyladenine (3-MA), inhibitor], and protease activities, caspase 3-like, and metacaspase activities

(E64, Ac-DEVD-CHO, and Ac-VRPR-FMK; inhibitors), reduces cell death levels, increasing embryogenesis in

rapeseed and barley  opening up pathways reducing stress-induced cell death at the early stages of microspore

embryogenesis.

Inductive stresses are responsible for cell reprogramming. The process involves DNA demethylation and de novo

methylation . A global DNA hypomethylation during the change of the gametophytic to sporophytic fate and first

embryogenic divisions were observed in barley . Among inductive stressful conditions, darkness is one of the

most exploited in cereals . When mannitol is applied, triggering microspores to dividing , the culture is

subjected to osmotic, and carbon starvation discussed earlier . Sometimes, instead of darkness, heat stress is
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applied . It was suggested that ethylene participates in the response of plants to heat stress . Stresses

induce ethylene accumulation. The higher the ethylene concentration, the higher the chance of plant survival under

stressful conditions . Most probably, ethylene modulates gene expression via ethylene signaling mechanisms

.

The tissue culture medium itself may be treated as a stressful factor. The regeneration medium contains many

ingredients such as 6-benzylaminopurine, 2,4-dichlorophenoxyacetic acid, alpha-naphthalene acetic acid, and

indole-3-acetic acid not necessary are neutral to the cells may induce TCIV . As such ingredients may be

toxic, they may lead to genomic DNA degradation as indicated by comet analysis . It was also demonstrated that

copper and silver ions containing media might also affect DNA methylation patterns , resulting in DNA sequence

changes . Moreover, the two ions most probably change respiratory chain balance affecting the Yang cycle 

and inducing sequence changes . Interestingly, copper and silver may moderate relationships between de novo

methylation/demethylation processes, leading to green plant regeneration . For more details on that, see an

excellent review published recently .

Assuming that different stresses may affect in vitro tissue culture, the mucilage layer, the cell wall, and the plasma

membrane are reasonable candidates for sensing stresses  affecting the cell functioning and possibly

promoting the TCIV. However, the information on how the mucilage layer, the cell wall, and plasma membrane

perform due to in vitro tissue culture plant regeneration is not well addressed.

3. Cell Wall and Plasma Membrane as Sensors of Stresses

Even less, the pollen cell wall protects male sperm from abiotic stresses (i.e., abrasion, desiccation, and UV

radiation). A durable wall consists of gametophyte-derived intine and sporophyte-derived exine layers covered with

lipid-rich pollen coat or trephine . The intine resembles the primary cellulosic plant cell wall 

whereas the exine is formed of a heterogeneous polymer composed of polyhydroxylated aliphatic constituents with

aromatic or conjugated side chains containing ether and ester bonds  called sporopollenin synthesized

from precursors in tapetum  and anchored on to microspores .

Pollen wall formation starts after microspore meiosis generating tetrads covered with callose. At the late tetrad

stage, the microspore surface is formed of primexine, a transient cell wall matrix-shaped of polysaccharides

outside of microspore plasma membrane inside callose. Primexine is composed of sporopollenin. This layer may

contain cellulase . The callose wall degrades after the tetrad phase allowing free microspore release into the

locule and tecta. At this stage, a thin microspore-derived intine wall forming between the developing exine and a

microspore-derived intine wall is evidenced .

As the composition of the microspore cell wall is not apparent, available information on the plant cell wall in general

with emphasis on cellulose and wall matrix polysaccharides  are discussed. All of them form a rigid structure.

The essential cell wall function relies on providing mechanical strength to resist turgor pressure. It forms a barrier

against biotic and abiotic stresses that may alter the cell wall components’ deposition .
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The cell wall cellulose may be present in amorphic, semi amorphic, or crystalline forms. Crystalline cellulose has

significantly better stiffness than all other constituents. Amorphous cellulose is more penetrable and accessible to

enzymes and has a higher enzyme binding capacity than its crystalline counterpart so that it has a higher

hydrolysis rate. The ratio of these two regions characterizes crystallinity. The cellulose with high crystallinity usually

has low enzymatic hydrolysis efficiency . Cellulose synthase (CESA) complexes (CSCs) synthesize

cellulose microfibrils assembled in the Golgi apparatus. CSCs actively synthesize cellulose when delivered to the

plasma membrane (PM). CSCs move along cortical microtubule paths that define cellulose microfibrils synthesis.

CSC traffic between the PM and various intracellular compartments plays a vital role in determining the level of

cellulose synthesized . Uridine diphosphate glucose (Glc) originates from the cytosolic invertase/uridine

diphosphate Glc phosphorylase pathway . It is the substrate for CESAs . The CESA proteins are involved in

the dimerization/oligomerization of CESA subunits  due to a cytosolic N-terminal region. Moreover, the proteins

consist of two transmembrane domains, a large cytoplasmic central loop that contains the substrate binding and

catalytic regions, six additional transmembrane domains , and an intracellular C-terminal domain. The CSC

rosettes contain 18 CESA subunits synthetizing 18 glucans .

Phytohormones may influence cell wall composition. For example, the amount of cellulose increases in methyl

jasmonate, whereas lignin content decreases after salicylic acid application. The profile of gene expression

involved in cell wall biosynthesis is also modified . Phytohormone signaling pathways regulate stress

perception at the primary cell wall, followed by cellulose synthesis and microtubule arrangement . Alternatively,

ROS and peroxidases arising in response to stresses in the cell wall may cross-link phenolic compounds and

glycoproteins, resulting in stiffening. If ROS levels remain high during continued stress, OH°-radicals lead to

polymer cleavage . Cellulosomes could accomplish the same, an extracellular supramolecular multienzyme

complex that can efficiently degrade cellulose and hemicelluloses in plant cell walls .

The role of cellulose in sensing stresses was demonstrated on mutant plants. Cellulose-deficient mutants are

typically more sensitive to abiotic stress than wild-type plants . Thus, the cellulose synthesis machinery may be

vital in abiotic stress responses . The other option is that some cell wall components may sense stresses via

cell wall integrity . The cell wall proteins, i.e., the Arabidopsis thaliana leucine-rich repeat receptor kinase LRR-

RK male discoverer 1-interacting receptor-like kinase 2 (MIK2) was suggested to play such a role . The MIK2

regulates cell wall damage responses upon cellulose biosynthesis inhibition due to abiotic stress . MIK2 has

overlapping functions with receptor-like protein kinase THESEUS 1 (THE1), also proposed as a cell wall integrity

sensor. Moreover, plants may coordinate stress responses by integrating phytohormones (auxins, cytokinins,

gibberellins, abscisic acid, ethylene, brassinosteroids, salicylic acid, jasmonates, and strigolactones) and their

pathways .

Recent studies have demonstrated that cellulose forms participate in a signaling pathway that links cellulose and

mitochondria. Two cell wall maintainer1 (cwm1) and cwm2 pentatricopeptide repeat protein genes were shown to

be involved in editing mitochondrial transcripts encoding subunits of respiratory complexes (i.e., complex III linked

to the maintenance of cell wall integrity under stress) and activation of retrograde mitochondrial signaling via

ANAC017, a transcription factor participating in retrograde signaling to the nucleus upon mitochondrial dysfunction
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. A complex hierarchy of transcription factors exists downstream of ANAC017. These involve ANAC and

WRKY transcription factors associated with organellar signaling and senescence; moreover, the network includes

ethylene- and gibberellic acid-related transcription factors involved in stress responses .

The development of plants requires the biosynthesis, deposition, and degradation of cell wall matrix

polysaccharides. Biosynthesis of polysaccharides is performed in the endoplasmic reticulum and Golgi of the plant

secretory system by polysaccharide glycosyltransferases (GTs) transmembrane proteins. The synthesis of the cell

wall matrix glycans (pectins, xylans, xyloglucans, mannans, mixed-linkage glucans (MLGs), and arabinogalactan

components of arabinogalactan proteins (AGPs) proteoglycans) was mapped to multigene families . Different

stresses can perturb targeted genes to promote functional adaptation . The polysaccharide fraction of the cell

wall may participate in stress sensing . The environmental (mechanical) signals affect the cell wall determining

its phenotypic features. However, the way stress is sensed and transmitted into the cell is still under investigation.

The plasma membrane was suggested to participate in signal transduction because of its position at the interface

between the cell’s interior and the cell wall. Thus, the crucial players that maintain cell status and respond to

stresses are in the plasma membrane’s same vicinity . Interestingly, the layer between the plasma membrane

and cell wall, the so-called subintinal layer present in microspores with embryogenic fate and composed of callose,

is also considered essential in stress sensing. As callose is formed of glucans, it may serve as a source of glucose

 required by glycolysis which impacts the Krebs cycle and the electron transport chain.

Cereal β-glucans have a specific combination of β-(1→4) and β-(1→3) linkages into linear long-chain

polysaccharides of high molecular weight. β-glucans were identified in barley and oats . Under elongated dark

conditions, β-glucans deliver glucose for glycolysis, supporting biosynthesis of, i.e., lipids  that may act as

signaling compounds , affecting gene expression . Thus, the subintinal layer components are

reasonable candidates for signals  of stresses in microspore culture. It was also demonstrated that β-glucans

might impact DNA methylation of the CHG context in barley . Whatever is the sensor of abiotic stresses at the

cell wall level, the signal needs to be transmitted to the cell. It is being accepted that calcium is a second

messenger that facilitates responses to stresses by activating calcium-binding proteins . Another

candidate that can sense stress and may act as a cell wall mechanism protecting plants from external stresses is

β-1,3-linked D-glucose . Furthermore, evidence shows that massively glycosylated hydroxyproline-rich proteins

called AGP improve plant regeneration in barley anther culture . The AGP content changes in Brassica napus

are related to the developmental fate of microspores . The proteins are present in the mucilage layer, the cell

wall, and the cell membrane and participate in microspore fate change towards sporophytic pattern and may be

involved in stress signaling .

4. Retrograde and Anterograde Signaling

It is becoming evident that nuclear genes’ transcription regulation may be modulated by plastid gene expression

. Such regulation is called retrograde signaling. The reversed interaction when nucleus genes influence

plastids’ genome functioning is called anterograde  (Figure 1).
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Figure 1. Schematic illustration of the interplay between cellular organelles. Anterograde is the signaling from the

nucleus towards chloroplasts or mitochondria, whereas the reversed direction is called retrograde signaling. The

communication between mitochondria and chloroplast (and other organelles except but nucleus) is called cross-

talk.

Little is known of the two interactions in the context of microspores. The available literature is devoted chiefly to

chloroplasts. Based on chloroplast biogenesis, retrograde signaling could be divided into “biogenic” and

“operational” signals. The “biogenic signals” are the signals exhibited during early chloroplast development,

whereas the “operational signals” are related to chloroplasts’ normal function in mature plants. Based on the

signals’ origin, the retrograde signaling pathways in chloroplasts may include tetrapyrroles biosynthesis, redox

state, chloroplast gene expression, reactive oxygen species, and protein import into plastids. The retrograde

signaling pathway was described in barley mutant albostrians, which lacks plastid ribosomes and shows reduced

amounts and/or activities of nuclear-encoded plastid proteins (the small subunit of ribulose-1,5-bisphosphate

carboxylase⁄oxygenase (Rubisco), ferredoxin NADP+ reductase, and enzymes of the Calvin cycle) . Inhibition

of tetrapyrrole biosynthesis and plastid gene expression activity resulted in the moderated expression of nuclear

starch biosynthesis genes in tobacco . It is well known that in vitro plant regeneration involves stressful

conditions that induce chloroplast proteome remodeling. Nuclear factors regulate chloroplast gene expression, and

this form of anterograde regulation has roles in plant adaptation to abiotic stress . Furthermore, retrograde and

anterograde signaling was demonstrated in barley in the case of albino plant regeneration via androgenesis 

. The other line of evidence suggests that retrograde mitochondrial signaling may also be essential for plants.
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For instance, mitochondria have been proposed to play a vital role in programmed cell death (PCD) in anther

tapetum cells. PCD is crucial during anther development providing lipids coating pollen exines . The role of

PCD in the tapetum was also demonstrated in sunflower . However, it could not be excluded that such similar

signaling may act for anther cultures. Thus, the retro and anterograde signaling pathways may affect organelle

functioning’s biochemical level, linked to epigenetic aspects of the in vitro tissue culture-induced variation.

5. Biochemical Aspects

Another layer that is being affected by in vitro tissue culture plant regeneration relates to biochemical pathways.

The available data indicate that callose present in the subintinal layer  of microspores may affect the Krebs’

cycle via complex II involved in the electron transport chain (ETC) . Problems with ATP synthesis may disturb

the Yang cycle , followed by DNA methylation problems  and induction of mutations , and possibly

activation of transposable elements (TEs) . Indirectly, the Yang cycle is responsible for spermine and

spermidine synthesis . The compounds may participate in gene expression regulation . Furthermore, the

Yang cycle is essential for the cell’s glutathione synthesis as an antioxidant reagent preventing modification of, for

example, methylated cytosines. It was documented that glutathione significantly improved plant regeneration via

anther culture in the rye . Possibly, that disturbances in the Krebs’ cycle may change fatty acid synthesis

(Figure 2). Fatty acids may influence, for example, gene transcription  and glycolysis. Furthermore, glycolysis

could be disturbed under carbon starvation stress . Thus, in vitro tissue culture plant regeneration is a complex,

multidimensional process affecting all cell functioning levels. Understanding the relationships among all of the

system’s components is vital for the elaboration of knowledge-based approaches of in vitro plant regeneration and

regulation of the levels of somaclonal variation.
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Figure 2. Schematic illustration of biochemical cycles that may participate in the induction of in vitro tissue culture

variation. Briefly, under cold treatment and darkness and maltose presence, carbon starvation stress results in

disfunction of glycolysis affecting the Krebs cycle. Disbalance in the Krebs cycle could be sensed at the electron

transfer chain level via complex II and problems with ATP synthesis, which influence the Yang cycle. The latter is

responsible for producing SAM involved in 80% of the cell compounds’ methylation processes, including genomic

cytosines. The Yang cycle’s mall functioning may also influence glutathione production (antioxidant) used but the

cell during oxidative stress. Oxidative stress may modify methylated cytosine, inducing point mutations.

Furthermore, byproducts of the Yang cycle may regulate transcriptome as the result of abiotic stresses.

Abbreviations: B12 (vitamin B12); CoA (Coenzyme A (acyl-CoA); CoASH (coenzyme A not attached to acyl group);

DNMT (DNA methyltransferase); dSAM (decarboxylated SAM); ER stress (endoplasmic reticulum stress); HKMT

(histone lysine methyltransferase); PRMT; MS (methionine synthesis); MTA (5′-methyl thioadenosine); NAD

(nicotinamide adenine dinucleotide); NADH (1,4-dihydro-nicotinamide adenine dinucleotide); PRMT (protein

arginine N-methyltransferase); ROS (radical oxygen species); SAMe (S-adenosyl-L-methionine); SAH (S-

adenosylhomocysteine).
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