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The SARS-CoV-2 main protease (Mpro) is one of the molecular targets for drug design. Effective vaccines have been

identified as a long-term solution but the rate at which they are being administered is slow in several countries, and

mutations of SARS-CoV-2 could render them less effective.
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1. Introduction

Viral infection is one of the major challenges faced by human health, and many viral diseases are correlated with high

morbidity and mortality rates in humans. Previously, viral diseases such as influenza, dengue, HIV, and coronaviruses

have resulted in epidemics or global pandemics, claiming many lives. Currently, the world is battling with coronavirus

diseases 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which has

resulted in approximately 4 million deaths as of July 2021. The emergence of variants of this disease has also been

challenging to the developed vaccines, and, as it stands, there are no effective therapeutic interventions against this

disease. Proteins associated with viral infection can serve as molecular targets for disease prevention and treatment.

Molecules involved in viral DNA replication and protein synthesis can be pivotal to these processes. Targets such as

Papain-like protease (PLpro), 3-chymotrypsin like protease (3CLPro) also called main protease (M ), RNA-dependent

RNA polymerase (RdRp), and helicase have been reported as potential points of treatment development for SARS-CoV-2

infection . The SARS-CoV-2 spike protein and angiotensin-converting enzyme-2 (ACE-2) were also identified as

promising targets for disease prevention . The non-structural proteins essential for the replication of viral particles

are specifically generated by PLpro and M , defining their roles in viral replication and outlining their inhibition as

potential anti-SARS-CoV-2 treatments .

Biologically active molecules have been screened against M  as either repurposed drugs or in the process of lead

identification. Muhammad et al.  screened a library of phytochemicals against M  and revealed the potential usage of

molecules from natural sources as anti-COVID-19 druggable candidates. In another study, bioactive medicinal plants were

assayed against M  using in silico docking and pharmacological screening. Selected molecules from alkaloids and

terpenoids were identified as inhibitors of this target, with a highly conserved inhibitory pattern to both SARS-CoV-2 and

SARS-CoV . Moreover, nucleopeptides and Opuntia-derived phytochemicals were suggested as M  potential

inhibitors . Therefore, the inhibition of protein activity of M  may potentially suppress coronavirus transmission.

Natural products of low molecular weight from plant sources are potent therapeutic agents for many diseases and some of

these agents possess antiviral properties. While many natural products are fundamentally utilized as crude extracts, the

purification of their active ingredients is essential for the prediction of their properties associated with the

pharmacokinetics and pharmacodynamics of a drug molecule.

Accumulating evidence suggests that plant chemicals, for example, polyphenols and their functional derivatives such as

flavonoids, saponins, and lignans can alter cellular functions, membrane permeability, and viral replication . The role of

phytochemicals has also been implicated in cell migration and proliferation, metabolism regulation (phytosterol, flavanols,

anthocyanidins, cinnamic acids, etc.) , inflammatory processes (quercetin, kaempferol, etc.) , redox modulation

(phenolics, curcumin, resveratrol, etc.) , and angiogenesis (astaxanthin) . Ethanolic extract of Ficus benjamina
has been shown to contain some active compounds such as rutin, kaempferol 3-O-rutinoside, and kaempferol 3-O-

robinobioside, which were effective against herpes simplex . Equally, the phytochemicals homolycorine and 2-O-

acetyllycorine isolated from Leucojum vernum were shown to be effective against HIV-1 . Rutin is a glycosylated

flavonoid with a 3-rutinoside substitution. Its antiviral activity has been studied against avian influenza virus , herpes

simplex , and parainfluenza-3 virus .
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The world population is largely dependent on therapies from plant origin . Compounds isolated from this source have

little or no side effects with high biological specificity, chemical diversity, and targets multiple host sites by diverse

pathways with negligible cost . It was previously demonstrated that flavonoids, among other active compounds from

plant sources, have been used for the treatment of HIV, herpes simplex, and influenza viruses, due to their antiviral

properties . These compounds inhibit viral replication, proteases, and reverse transcription . Compounds such as

quercetin, rutin, and myricetin have also been identified with similar properties .

2. ADME/Tox Prediction

The pharmacokinetics and toxicological properties of the ligands (Table 1 and Table 2) were analyzed according to

previous methods to investigate how molecules can access the target site of M  after entering the bloodstream. This

analysis is also crucial for analyzing the efficacy of molecules . All parameters were within the ROF cut-off range for

the test compounds and present no bystander toxicity effects since toxicity is the main task in developing new

medications. Ames toxicity, carcinogenic properties, and rat acute toxicity were predicted in the current investigation.

Table 1. Properties of the selected compounds.

 Compound ID from PubChem database.  Formula weight of the compounds (acceptable range: 130.0–725 g/mol). 

Number of permissible violations of Lipinski’s rule of five (acceptable range: maximum is 4).  Predicted IC  value for

blockage of HERG K  channels (concern below −5.0).  Predicted octanol/water partition coefficient log p (acceptable

range: −2.0 to 6.5).  Predicted skin permeability, log Kp (acceptable range: −8.0 to −1.0).  Predicted aqueous solubility; S

in mol/L (acceptable range: −6.5 to 0.5).  Predicted brain/blood partition coefficient (acceptable range: −3.0 to 1.2). Donor

HB (≤10); Acceptor HB (≤5).

Table 2. Toxicity analysis of the selected compounds predicted by AdmetSAR.

Compound ID Ames Toxicity Carcinogens Acute Oral Toxicity Rat Acute Toxicity

Quercetin 3-O-Neohesperidoside 5748416 AT NC III 2.2619

Myricetin 3-Rutinoside 44259428 NAT NC III 2.4984

Quercetin 3-Rhamnoside 5353915 NAT NC III 2.5458

Rutin 5280805 NAT NC III 2.4984

Myricitrin 5281673 NAT NC III 2.5458

Note: AT: Ames toxic NAT: Non Ames toxic; NC: Non-carcinogenic; Category-III means (500 mg/kg > LD50 < 5000
mg/kg).

3. Docking Calculations

The protein-ligand interactions for all the complexes after the docking procedure were produced by Proteins Plus at

https://proteins.plus/ (accessed on 1 August 2021) as depicted in Figure 1. The model representation of the best pose

against decoy poses was also presented using M -Quercetin-3-O-Neohesperidoside (Figure 2). The binding properties,

such as the scoring functions of Autodock Vina and MM/GBSA, the number of hydrogen bond integrations, and types of
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Compound ID M.W ROF QplogHERG QplogPoW QplogKP Donor
HB

Acceptor
HB

QplogS QplogBB

Quercetin 3-O-
Neohesperidoside 5748416 610.5 2 −6.449 −1.998 −6.423 9 20.55 −2.932 −4.728

Myricetin 3-
Rutinoside 44259428 626.5 2 −6.394 −2.455 −5.583 10 21.3 −2.341 −4.306

Quercetin 3-
Rhamnoside 5353915 448.3 2 −5.451 −0.55 −6.101 6 12.05 −3.196 −3.312

Rutin 5280805 610.5 2 −5.238 −2.495 −7.251 9 20.55 −2.175 −4.503

Myricitrin 5281673 464.3 2 −5.463 −1.045 −6.589 7 12.8 −2.779 −3.48
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residues and their distances (Å) are tabulated in Table 3. In addition, the possible residue interaction crucial to the

inhibition process of M  by these flavonoids was proposed in Figure 3.

Figure 1. 2-dimentional protein–ligand interactions created for docked ligands and N3 into the active site of M  ranked

according to their binding energies. Black bond interactions showed H-bonds between the atoms of the ligands and the

residues of the receptor.

Figure 2. Molecular docking of the ligands into M  binding site. (A) the docking of the selected ligands in M  binding

pocket; (B) Quercetin-3-O-Neohesperidoside seats perfectly in the Mpro binding pocket; (C) interacting atoms of

Quercetin-3-O-Neohesperidoside and M  residues in the binding pocket. Note: blue lines indicate hydrogen bond

interaction; green dotted lines indicate pi-stacking, while gray dotted lines depict hydrophobic interactions.
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Figure 3. Atomic interaction of flavonoids with Mpro residues. While several residues form hydrophobic interactions with

the ligands, other interactions such as hydrogen, π-cation, and π-π stacking were also involved in the inhibition

mechanism of M .

Table 3. Binding energies of flavonoids docked against M .

Name Dock
Score

∆G
Bind

H-
Bond Residues (Å) Other Bond (Å)

Standard −16.5 −80.88 6 CYS145 (2.13), LEU141 (2.76), PHE140 (2.02),
GLU166 (1.68,1.83, 2.05) Salt bridges (2)

Quercetin 3-O-
Neohesperidoside −16.8 −87.60 5 GLY143 (2.76), CYS145 (2.11), GLN189 (2.11),

THR190 (1.76), HIS41 (2.30)
π-π stacking
HIS41 (1.49)

Myricetin 3-Rutinoside −12.9 −87.50 7 CYS145 (2.08), ASN142 (1.75), GLU166 (1.98),
THR190 (2.21), ARG188 (1.97), HIS164 (1.90,1.98)  

Quercetin 3-
Rhamnoside −10.3 −80.17 4 LEU141 (1.49), THR190 (1.78), GLU166 (2.01),

HIS164 (1.81)  

Rutin −10.0 −58.95 6 THR190 (1.83), HIS41 (2.08), GLY143 (2.39,1.89),
ASN142 (1.92), LEU141 (2.10) -

Myricitrin −9.1 −49.22 3 CYS145 (2.51), ASN142 (2.04), THR190 (1.83) π-π stacking
HIS41 (5.37)

4. Molecular Dynamic Simulation

To associate structural and mechanistic information with experimental data, the MDs were carried out. The M -ligand

complexes were computationally simulated for 100 ns to decipher the complex stability and dynamic behavior as

presented in Figure 4, Figure 5 and Figure 6, and Table 2. The root-mean-square deviation (RMSD) of the five ligands

were plotted against 1000 frame indexes for 100 ns (Figure 4a). The root-mean-square fluctuation (RMSF) of the C-alpha

of the protein complexed with these ligands was also plotted against residues (Figure 4b). The ligand properties were

also taken into account by plotting the radius of gyration (rGyr) for all five complexes against the frame index over the 100

ns simulation time (Figure 5). The simulation properties were calculated as the mean ± SD for RMSD, RMSF, and rGyr

(Table 4). Finally, protein interactions with the ligands were monitored throughout the simulation. These interactions were

categorized by type and summarized as shown in Figure 6.
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Figure 4. Stability and flexibility of the selected flavonoid derivatives complexed with M  over the course of 100 ns. (A) is

the RMS deviation and (B) is the RMS functions of the Cα of each complexes. Color codes denote: Quercetin-3-O-

Neohesperidoside (A), Quercetin 3-Rhamnoside (B), Myricitrin (C), Rutin (D), and Myricetin 3-Rutinoside (E).

Figure 5. Radius of gyration (rGyr) plot for M  and the selected flavonoid derivatives within the simulation time of 100 ns.

Color codes denote: Quercetin-3-O-Neohesperidoside (A), Quercetin 3-Rhamnoside (B), Myricitrin (C), Rutin (D), and

Myricetin 3-Rutinoside (E).

Figure 6. Observed M -ligands interaction during the 100 ns MD simulation. Interactions include; hydrogen bonds,

hydrophobic, ionic and water bridges. Letter codes indicate: Quercetin-3-O-Neohesperidoside (A), Quercetin 3-

Rhamnoside (B), Myricitrin (C), Rutin (D), and Myricetin 3-Rutinoside (E).

Table 4. The simulation properties of the complexes.

Properties A B C D E

RMSD 1.98 ± 0.19 2.25 ± 0.26 3.05 ± 0.57 1.81 ± 0.30 2.26 ± 0.51

RMSF 1.00 ± 0.51 1.31 ± 0.55 1.27 ± 0.58 1.15 ± 0.58 1.25 ± 0.65

rGyr 5.03 ± 0.09 4.96 ± 0.03 4.57 ± 0.05 5.15 ± 0.10 6.09 ± 0.09
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Values represent the mean ± SD of 1000 frame index replicates. Letter codes: Quercetin-3-O-Neohesperidoside (A),

Quercetin 3-Rhamnoside (B), Myricitrin (C), Rutin (D), and Myricetin 3-Rutinoside (E). Values are in Å.
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