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Sonodynamic therapy is an effective treatment for eliminating tumor cells by irradiating sonosentitizer in a patient’s body

with higher penetration ultrasound and inducing the free radicals. Titanium dioxide has attracted the most attention due to

its properties among many nanosensitizers. Hence, in this study, carbon doped titanium dioxide, one of inorganic

materials, is applied to avoid the foregoing, and furthermore, carbon doped titanium dioxide is used to generate ROS

under ultrasound irradiation to eliminate tumor cells. Spherical carbon doped titanium dioxide nanoparticles are

synthesized by the sol-gel process. The forming of C-Ti-O bond may also induce defects in lattice which would be

beneficial for the phenomenon of sonoluminescence to improve the e ectiveness of sonodynamic therapy. By dint of

DCFDA, WST-1, LDH and the Live/Dead test, carbon doped titanium dioxide nanoparticles are shown to be a

biocompatible material which may induce ROS radicals to suppress the proliferation of 4T1 breast cancer cells under

ultrasound treatment. From in vivo study, carbon doped titanium dioxide nanoparticles activated by ultrasound may inhibit

the growth of the 4T1 tumor, and it showed a significant di erence between sonodynamic therapy (SDT) and the other

groups on the seventh day of the treatment.
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1. Introduction

Photodynamic therapy (PDT) is limited due to the shallow penetration depth of light sources into tumor tissue. In previous

studies, we used X-ray as an alternative light source which provided a novel therapeutic approach for deep-seated

tumor/cancer treatment ; however, the annual radiation dose limit was another issue. Thus, an alternative therapy

with fewer side effects was proposed by Umemura and Yumita, called ‘‘Sonodynamic therapy (SDT)’’ . SDT can focus

the ultrasound energy on the deeply located tumor site, which overcomes the shortcoming of PDT. SDT is considered to

be a safer and more acceptable therapy for patients compared to radiotherapy and chemotherapy . It is noninvasive, and

the apparatus is relatively inexpensive .

SDT consists of three basic elements: ultrasound, sonosensitizer and oxygen molecules. The mechanism of SDT is that

the nonthermal effect of acoustic cavitation generated by sonoluminescence, and the sonoluminescent light activates the

sonosensitizer, leading to the electronic excitement of the sonosensitizer . When the excited sonosensitizer decays back

to the ground state, the released energy transfers to oxygen to generate the highly reactive singlet oxygen ( O ) .

Meanwhile, the energy may lead to pyrolysis reaction of the water near the exposed site of ultrasound and generate

hydroxyl radicals (•OH). These reactive oxygen species (ROS) may cause the death of the tumor cells afterwards . ROS

plays an important role in cellular signaling pathways, such as metabolism, growth, differentiation and death signaling,

and react with molecules by reversible oxidative modifications. Excess generation of ROS may cause cell senescence

and death to intracellular biomacromolecules, such as protein, lipid, RNA and DNA, via oxidative damage .

Ultrasound is a mechanical wave with periodic vibrations in a continuous medium at frequencies greater than 20 kHz .

Ultrasound is able to penetrate tissue with less attenuation of energy. Therefore, it can be applied to medical diagnosis

and therapeutic use. For a medical diagnosis purpose, the ultrasound is irradiated at a frequency of 2.0 to 28.0 MHz with

low-energy irradiation to prevent tissue from damaging. For therapeutic use, the ultrasound is irradiated at a frequency of

0.5 to 3.0 MHz with higher doses of energy to generate the desired biological results . For SDT, low-intensity ultrasound

is used to induce the non-thermal and sono-chemical effects to activate sonosensitizer to cause the damage and even the

death of tumor cells . The non-thermal effect of ultrasound in SDT is cavitation that involves formation, growth and

collapse of cavitation bubbles . Under ultrasound irradiation, the static pressure of the aqueous solution decreases below

the vapor pressure, and water may evaporate into gas bubbles. The cavitation bubbles nucleate in the presence of

impurities or pre-existing bubbles in solution and oscillate in the phase under irradiation . During the ultrasound

irradiation, bubbles grow increasingly larger and stop growing when the static pressure equals the vapor pressure. They

may start to break down from its weakest spot when the static pressure exceeds the vapor pressure, and then collapse
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(known as inertial cavitation) led to a highly concentrated energy release . The released energy leads to the pyrolysis

reaction of the water, which generate (•OH) and short light pulses (known as sonoluminescence) . Sonoluminescence

involves intense ultraviolet-visible light, which can excite sonosensitizer to generate ROS .

2. Sonosensitizers

Sonosensitizers play a critical role in SDT that can enhance the effect of ultrasound. The development of sonosensitizers

had grown swiftly in recent decades due to the known mechanisms of cell apoptosis for SDT . The porphyrin-based

sonosensitizers, such as photofrin, hematoporphyrin, 5-ALA (5-aminolevulinic acid) and chlorin-e6, are the most often

used sonosensitizers in SDT research . However, porphyrin-based sonosensitizers have phototoxicity on the skin that

may affect both tumor cells and normal cells under a certain wavelength of light or energy irradiation in PDT studies,

which means that this issue may also take place in SDT . On the other hand, most sonosensitizers were hydrophobic

and easy to aggregate in physiological condition, leading to a reduction in their ROS production . Nonetheless, the

development of nanoparticles shows a promising potential to solve these problems. Among many nanosensitizers,

titanium dioxide (TiO ) has attracted the most attention due to its properties . TiO  is widely used in many territories

based on low toxicity, high stability, high photocatalytic activity and low cost . Compared to porphyrin-based

sonosensitizers which are quickly degraded under oxidizing conditions, TiO  exhibits high stability because it is highly

resistant to degradation by ROS. TiO  exhibits three kinds of crystal structures, namely anatase, rutile and brookite.

Anatase and rutile are the most common in the utilization of crystal structures, and brookite is less used in industrial

application. Even though anatase (E  = 3.2 eV) has a wider bandgap than rutile (E  = 3.0 eV), anatase shows higher

photoactivity due to its larger specific surface area that anatase is more suitable to be used as a photocatalyst . In

previous studies, the anatase structure of TiO has been utilized as a sonocatalyst to generate ROS under ultrasound

irradiation . Nonetheless, the wide bandgap of anatase requires a greater energy to trigger. Carbon has previously

been doped in the semiconductors to form a new valence band, thus narrowing the bandgap . The addition of carbon

may give TiO  an excess of conducting electrons or holes which is important for lowering the bandgap .

TiO  is one of most representative material studied in inorganic sonosensitizers. Nonetheless, the low quantum yield of

ROS limits the effectiveness of TiO  as a sonosensitizer by rapid recombination of the free electron and electron hole. The

addition of noble metals, such as Pt and Au, have been reported to retard carrier combination . Pt-doped or Au-

doped TiO  has been confirmed to show therapeutic efficacy and suppress the growth of tumors significantly. However,

the price of novel metals would increase the cost of material preparation dramatically. Carbon shows highly promising

dopant to narrow the bandgap, reaching similar therapeutic efficacy to a novel metal-based system in a more economical

way. The comparative table is listed in Table.

Table 1. The sonosensitizers and the matched ultrasound parameters.

Tumor/Source Host Sonosensitizers
Ultrasound Parameter

Reference
MHz (f) W/cm  (I) Duration (s)

Heptaic/human mouse TiO 0.5/1.0 0.8/0.4 60

Skin/mouse mouse TiO 1 1.0 120

Breast/human mouse TiO 1 0.1 30

Lung/mouse mouse Au-doped TiO 1.5 30 30

Breast/human mouse Pt-doped TiO 1 1.5 300

The unstableness of the excited state may cause decay back to the ground state, leading to energy release. The released

energy may transfer to oxygen to generate the highly reactive singlet oxygen and water to generate hydroxyl radicals

(Figure 1). With the increasing concentration of singlet oxygen and hydroxyl radicals, 4T1 cells would be gradually

damaged and lead to cell senescence and death due to oxidative damaging effects . Due to the enhanced

permeability and retention (EPR) effect, C-doped TiO  preferentially accumulates in tumor cells eliciting efficient ROS

generation  and further increasing the effectiveness of the SDT treatment. It was also revealed that the suppression of

the tumor is due to the elevated level of ROS which results in both direct tumor cell death and blood vessel stasis. ROS

can induce blood stasis via platelet aggregation or vessel constriction by destroying the endothelial layer . Furthermore,

SDT may elevate the level of inflammatory-associated cytokine (including TNF-alpha, IL-6, IL-1) production which is

known to stimulate the maturation and function of granulocytes and macrophages .
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Figure 1. The possible pathway of 4T1 tumor cell damage induced by SDT.
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