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Gold nanoparticles (AuNPs) have gained high prominence in the biomedicine field, due to their own physico-chemical

properties that are suitable for different imaging or therapeutic uses, versatile structural modification, including easy

functionalization of their surface with different chemical entities (e.g., chelators, targeting biomolecules or cytotoxic drugs),

favourable biological half-life, low toxicity and biocompatibility. In particular, the use of AuNPs in radiopharmaceutical

development has provided various nanometric platforms for the delivery of medically relevant radioisotopes for

SPECT/PET diagnosis and/or radionuclide therapy
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1. Introduction

Nanotechnology is a discipline of science and engineering that has led to innovative approaches in many areas of

medicine based on the use of biocompatible nanoparticles. Its applications in the screening, diagnosis, and treatment of

disease are collectively referred to as “nanomedicine”, an emerging field that has demonstrated great potential to

revolutionize individual and population wide health in the future. It can be seen as a refinement of molecular medicine,

integrating innovations in genomics and proteomics on the path to a more personalized medicine .

For biomedical applications, nanoparticles can be obtained with a wide variety of materials including inorganic compounds

or organic polymers, among others. The use of different materials provides nanoparticles of different sizes and shapes

with varied physico-chemical properties well-fitted for a specific use in biomedicine . In this respect, it is important to

have in mind the influence of surface and quantum effects that affect the chemical reactivity of nanosized materials, as

well as their mechanical, optical, electric and magnetic properties .

The biological fate and potential toxicity of nanoparticles are also crucial issues, which might restrict their use for medical

applications. In fact, for some of them (e.g., quantum dots), their inherent toxicity is a potential drawback but for many

others (e.g., iron oxide and AuNPs) toxicity issues are less relevant. Nanoparticle biodistribution can vary greatly

depending on the type and size of the particle, as well as on their surface chemistry . For imaging and/or therapy of

cancer, the selective delivery of drugs or radionuclides into the tumour tissues is of paramount importance. For this

purpose, nanoparticles offer unique advantages. In fact, many NPs undergo the enhanced permeability and retention

(EPR) effect that is involved in the passive targeting of leaky tumour tissues. The EPR effect is a result of the leakiness of

the newly forming blood vessels and poor lymphatic drainage in growing tumours. During the angiogenesis process, the

endothelial cells from the blood vessel walls do not seal tightly against each other, leaving fenestrations of approximately

200–800 nm in diameter. These processes lead to a passive accumulation of nanoparticles in tumour tissues, as shown in

Figure 1 . On the other side, the versatile functionalization of the NPs surface with targeting biomolecules (e.g., a

peptide or an antibody) allows the specific targeting of tumours through interaction with receptors overexpressed in the

tumour cells or in the tumour microenvironment (Figure 1) .
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Figure 1. Illustration of the accumulation of nanoparticles in tumour tissues: passive vs active targeting. Adapted from

Mahmoudi et al. (2011) .

For biomedical applications, namely for cancer imaging and therapy, AuNPs offer the possibility of a versatile

functionalization with targeting biomolecules for specific accumulation in tumour tissues, allowing more precise

diagnostics and/or localized therapeutic effects. For instance, the combination of nuclear medicine modalities with

nanotechnology offers unique opportunities to achieve this goal by allowing the easy and convenient merge of a variety of

diagnostic and therapeutic capabilities into a single agent, within a theranostic approach of cancer. This requires the

design of radiolabeled nanoconstructs that can be tailored ideally to the needs of every patient by selecting the

appropriate nanoparticle, targeting biomolecule and imaging or therapeutic radionuclide . Moreover, there are

currently available different methods to manipulate the size and shape of gold nanoparticles, spanning from shapes like

nanospheres (or nanoshells), nanorods, nanocages to nanostars (Figure 2), to obtain AuNPs tailored to the different

biomedical uses .

Figure 2. Different types of AuNPs, according to their shape and morphology. Adapted from L. F. de Freitas et al. (2018)

.

2. Synthesis of Gold Nanoparticles

One of the most common methods of AuNP synthesis is by reduction of a gold precursor, generally the tetrachloroauric

acid (HAuCl ), in the presence of a stabilizing agent (Figure 3a). In order to guarantee the reduction of the gold, strong to

mild reducing agents are used, like NaBH , hydrazine or citrate. In 1951, Turkevitch et al. developed one of the most

conventional synthetic routes, still in use to this day, which consists on the reduction of Au(III) in HAuCl  by citrate in

water. It is known as the citrate reduction method, which allows the formation of citrate stabilized AuNPs and a controlled

size of the particles by varying the citrate/gold ratio . A few years later, in 1994, Brust et al. introduced a new procedure

for the efficient synthesis of stable AuNPs with reduced dispersity and controlled size, which represented at the time an

important breakthrough. This procedure is based on the use of thiolated ligands that strongly bind to gold due to the soft

character of both Au and S. After addition of a reducing agent (NaBH ), the Au(III) is reduced to Au(I) and the AuNPs are

formed . This opened the opportunity to develop AuNPs using a great variety of thiolated ligands. This method allows

the control of core nanoparticle size by shifting the ratio of thiol/Au in the reaction mixture; for instance, the use of larger

thiol/Au ratios affords smaller core sizes with less polydispersity .

In recent years there has been an increased interest on green methodologies for the synthesis of AuNPs, using alternative

reducing agents to NaBH  or hydrazine that are environmentally toxic. In this regard, Katti et al. have developed extensive

work with phytochemical agents extracted from various biological media (e.g soybeans, tea leaves) . It was

demonstrated that these phytochemical agents performed the dual function of reducing the gold salt to form the AuNPs

and at the same time provide a protein coating that can stabilize the nanoparticle structure .

As mentioned above, AuNPs can be obtained in various forms, including nanospheres, nanorods, nanoshells or

nanocages. The synthetic methods described above are commonly used to obtain AuNPs in spherical amorphous form.

The synthesis of AuNPs with a more complex shape requires alternative methodologies . Gold nanorods (AuNRs)
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are commonly synthesized through the seed-mediated approach, which involves a two-step process where initially a seed

solution is prepared with tetrachloroauric acid in the presence of a strong reducing agent (e.g., NaBH ) (Figure 3b). The

seed solution is then added to a mixture of cetyltrimethylammonium bromide (CTAB), a mild reducing agent (e.g., ascorbic

acid) and tetrachloroauric acid. The elongated ellipsoidal shape of the CTAB micelles permits the growth of the AuNPs of

the seed solution in an elongated manner, in order to obtain a rod shape . Some variations on this procedure

include the addition of AgNO  prior to the growth phase, which allows a better control of the shape and increase the yield

of AuNRs .

Besides the seed-mediated method, other methodologies have also been reported in literature for the synthesis of AuNRs.

The template method is based on the electrochemical deposition of Au within nanoporous template membranes, which

can be of different materials (e.g., polycarbonate or alumina). Ag or Cu is added to the template membrane to form a

conductive film that allows for the electrodeposition of Au and growth of the nanoparticles within the membrane

nanopores. The nanorods are then recovered by selective dissolution of the template membrane and Ag or Cu film. The

diameter of the AuNRs is dependent of the nanopore diameter of the membrane, while the length can be controlled by the

amount of Au deposited .

Electrochemical methods for AuNR synthesis are usually based on the use of a dual electrode electrochemical cell. A gold

layer is used as the anode and a platinum layer as cathode. Both electrodes are immersed in a surfactant solution

composed of the cationic surfactant CTAB and a more hydrophobic cationic surfactant like tetradodecylammonium

bromide (TCAB), which are responsible for the formation of the rod-shaped nanoparticles. During the process of

controlled current electrolysis, the gold layer releases Au ions that migrate to the cathode where reduction occurs and the

AuNRs are formed .

Gold nanoshells (AuNSs) can be of two types, namely solid or with a hollow core (Figure 3c). The synthesis of core-

containing AuNSs is based on the use of a seed nanoparticle, which will form the core of the nanoshell. Then, the addition

of tetrachloroauric acid in the presence of a reducing agent leads to the deposition of gold seeds on the surface of the

core. SiO  is one of the most commonly used cores. These silica nanoparticles have a capping agent on their surface, like

3-aminopropyltriethoxysilane (APTES), which provides NH  groups that can link to the gold .
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Figure 3. Schematic synthesis of (a) AuNPs by the 1) Turkevitch and 2) Brust methodologies, (b) AuNRs by the seed-

mediated method, and (c) 1) core and 2) hollow AuNSs.

For the synthesis of hollow AuNSs, one approach is to use the silica core to synthesize the gold nanoshells as described

above and then use HF to remove the SiO  core. Another method is the template galvanic replacement of silver. This

methodology is based on the higher standard reduction potential of the AuCl /Au pair when compared with that of the

Ag /Ag pair. Silver is oxidized into Ag  when silver nanostructures and HAuCl are mixed in an aqueous medium. By

optimizing the ratio between the silver nanoparticles and HAuCl , silver atoms can diffuse into the gold shell (or sheath) to

form a seamless, hollow nanostructure with its wall made of Au-Ag alloys . The further increasing of the HAuCl

present in the medium triggers a dealloying process that selectively removes silver atoms from the alloyed wall. This

induces morphological reconstruction that leads to the formation of pinholes in the walls, and the nanoparticles acquire a

cage like structure. This is one of the common methodologies for the synthesis of gold nanocages (AuNCs). Temperature

also plays an important role in the replacement reaction because the solubility constant of AgCl and the diffusion

coefficients of Ag and Au atoms are both strongly dependent on this parameter .

Due to the inherent difficulties in analyzing nanoscale materials, in comparison with molecular or bulk materials, the

characterization of NPs requires particular analytical techniques and methodologies. It is common to recur to various

characterization techniques, in a complementary manner, to obtain reliable information on the NPs structure and their

physico-chemical properties. Besides the techniques summarized below, there are various other methodologies available

nowadays for NP characterization. The use of a single one of these characterization techniques cannot provide all the

required data for a proper assessment of the NP structure, hence it is necessary to take into consideration the technique’s

strengths and weaknesses, depending on the nature of the NP .

Microscopy techniques, like transmission electron microscopy (TEM) or scanning electron microscopy (SEM), can provide

information regarding the size and shape of the nanoparticles. On the other hand, the study of the hydrodynamic size

distribution relies on techniques like dynamic light scattering (DLS) or nanoparticle tracking analyses (NTA), which can

also provide information on the agglomeration state of the NPs in solution. Other commonly used techniques are zeta-

potential measurements for surface charge determination and UV-Vis spectroscopy for characterization of optical

properties, namely to determine the surface plasmon resonance wavelength that can be correlated with the size and

shape of the nanoparticles. In the particular case of metallic NPs, X-ray-based techniques, like X-ray diffraction (XRD),

are used to assess the crystalline structure and elemental composition .

3. Radiolabelling of Gold Nanoparticles

To pursue with a stable radiolabeling of AuNPs it is commonly required to perform their functionalization with suitable

molecular entities, which will allow for the coordination/conjugation of the radioisotopes . In this regard, there are

different synthetic pathways available to functionalize AuNPs: (i) using bifunctional molecules that can act as a

capping/stabilizing agent during the synthesis of the AuNPs and that can bind to the radioisotopes ; (ii) direct

conjugation of amino/thiolated molecules to the surface of preformed AuNPs ; (iii) ligand exchange, in which

some/all of the capping/stabilizing molecules on the AuNPs are exchanged with a different molecule with gold bonding

capabilities ; and (iv) chemical modification of molecules already present in the AuNP structure .

Another way to incorporate radionuclides into the AuNP structure, without their further chemical functionalization, is by

directly introducing the radioisotopes in the nanoparticle core (Figure 4). This is commonly achieved by using a Au

precursor in the synthesis of the nanoparticles . Alternatively, it has also been reported the neutron irradiation of

non-radioactive AuNPs to originate Au-containing nanoparticles through neutron capture reactions ( Au(n,γ) Au

and Au(n,γ) Au) .
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Figure 4. Schematic drawing of different pathways to incorporate radionuclides into AuNPs.

In some cases, it is possible to attach other radionuclides to the AuNPs without the need of extra chemical derivatization.

This can be achieved by adsorption of the radionuclide to the AuNP surface, namely for I or Cu . The

incorporation of the radionuclide in the NPs core is another possibility, as reported by Liu et al. for Cu alloyed AuNPs

modified with PEG. These Cu-labeled AuNPs were obtained starting from HAuCl  and Cu(acac)  and using

oleylamine as reducing agent . In the same way, Chen et al. have studied the integration of a Cu shell into PEG-

stabilized AuNPs by reducing Cu(II) in the presence of hydrazine and polyacrylic acid .
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