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Unlike in normal epithelium, dysregulated overactivation of various proteases have been reported in cancers. Degradation

of pericancerous extracellular matrix leading to cancer cell invasion by matrix metalloproteases is well known evidence.

On the other hand, several cell-surface proteases, including type II transmembrane serine proteases (TTSPs), also induce

progression through activation of growth factors, protease activating receptors and other proteases. Hepatocyte growth

factor (HGF) known as a multifunctional growth factor that upregulates cancer cell motility, invasiveness, proliferative, and

anti-apoptotic activities through phosphorylation of MET (a specific receptor of HGF). HGF secreted as inactive zymogen

(pro-HGF) from cancer associated stromal fibroblasts, and the proteolytic activation by several TTSPs including

matriptase and hepsin is required. The activation is strictly regulated by HGF activator inhibitors (HAIs) in physiological

condition. However, downregulation is frequently observed in cancers. Indeed, overactivation of MET by upregulation of

matriptase and hepsin accompanied by the downregulation of HAIs in urological cancers (prostate cancer, renal cell

carcinoma, and bladder cancer) are also reported, a phenomenon observed in cancer cells with malignant phenotype, and

correlated with poor prognosis.
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1. HGF/MET and the Related Molecules

1.1. HGF and MET in Cancer

1.1.1. HGF/MET Signaling Axis

MET, encoded by Met proto-oncogene located on chromosome 7q31, is a tyrosine kinase-type specific receptor of HGF,

which forms disulfide-inked heterodimer consisting of an extracellular alpha chain and single-pass transmembrane beta

chain . As shown in Figure 1, the intracellular domain of the beta chain comprises a juxtamembrane domain and

catalytic kinase domain containing an activation loop and carboxy-terminal multifunctional docking site. The

juxtamembrane domain downregulates the kinase activity by phosphorylation of Ser975, while the catalytic kinase domain

upregulates the activity by phosphorylation of Tyr1234 and Tyr1235. The multifunctional docking sites contain Tyr1349

and Tyr1356, which lead to downstream signaling through several intracellular adaptor proteins . Increased

expression of MET with worse prognosis has been reported in various cancer cells, and phosphorylation (activation)

potently promotes invasion and metastasis . Activation of HGF/MET signaling axis in cancer cells also plays a

significant role in proliferation, angiogenesis, epithelial-mesenchymal transition (EMT), and drug resistance .

Activation is introduced by: 1) ligand (HGF)-dependent activation, 2) reciprocal activation by overexpression-induced MET

oligomerization, 3) activating point mutation of tyrosine kinase domain, and 4) transactivation by heterodimerization with

another receptor tyrosine kinase . In the ligand-dependent activation, proteolytic activation of pro-HGF is necessary.

As mentioned above, two major activating protease families were reported: 1) a serum serine protease, HGFA; and 2)

type II transmembrane serine proteases (TTSPs) such as matriptase, hepsin, and transmembrane protease/serine

(TMPRSS) 2 . Although these pro-HGF activating proteases are tightly regulated by two transmembrane serine

protease inhibitors, HAI-1 and HAI-2, downregulation of HAIs has been observed in several cancers and has been shown

to induce progression .
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Figure 1. (a) Left: The structure of human MET is shown. MET consists of extracellular alpha and single-pass

transmembrane beta chain, which are disulfide-linked heterodimer. The beta chain is composed of six major domains

including Sema (semaphorin), PSI (plexin, semaphorin, integrin), IPT (immunoglobulin-like regions in plexins and

transcription factors), juxtamembrane, tyrosine kinase domain, and multifunctional docking site. Right: Sites of point

mutation in hereditary and sporadic papillary renal cell carcinoma (HPRCC and SPRCC) and conventional

phosphorylation sites in intracellular domains are shown. (b) Left: The structure of human pro-hepatocyte growth factor

(HGF) is shown. HGF consists of four Kringle domains and a serine proteinase homology domain. Right: The active form

of HGF is shown. HGFA, hepsin, matriptase, and TMPRSS2 proteolytically cleave between Arg 494 and Val 495 to

convert to a two-chain heterodimeric active form. One-letter abbreviation of amino acids is used.

1.2. Cell Surface pro-HGF Activating Enzymes and the Regulators

1.2.1. Type-II Transmembrane Serine Proteases (TTSP) in Cancers

The TTSP family in humans consists of 17 serine proteases . The structures are specified as a single-pass

hydrophobic transmembrane domain near the N-terminus with a short intracellular domain and a large extracellular

portion including a carboxy-terminal serine protease domain . All TTSPs are divided into the four subfamilies of

hepsin, matriptase, human airway trypsin-like protease (HAT) and corin (Table 1) . All TTSPs belong to the S1

peptidase family (noted in MEROPS as clan PA, family S1), and a catalytic triad consists of serine, aspartate, and

histidine residues, as shown in Figure 2 . Hepsin, matriptase and TMPRSS2 shows a strong cleavage preference for

substrate with arginine in the P1 position . In urogenital cancers, the expression of matriptase, hepsin and

TMPRSS2 has been reported (Figure 2). Therefore, we focused on these TTSPs in this review.

Figure 2. Structures of hepsin, matriptase and transmembrane protease serine (TMPRSS) 2 are shown. All type II

transmembrane serine proteases (TTSPs) show single-pass transmembrane proteins with intracellular NH2-terminus and

extracellular carboxy-terminal serine protease domains. Hepsin is composed of scavenger receptor (SR) and serine
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protease domains. Matriptase contains sea urchin sperm protein/enteropeptidase/agrin (SEA) domain, Cls/Cls, urchin

embryonic growth factor, bone morphologic protein-1 (CUB) domain, four low-density lipoprotein receptor (L) domains

class A and serine protease domains. TMPRSS2 is consists of an L domain, SR, and serine protease domains.

Table 1. Type II transmembrane serine protease (TTSP) family content.

Subfamily Protease

HAT/DESC

HAT

DESC1

TMPRSS 11A

HAT-like 4

HAT-like 5

Hepsin/TMPRSS

Hepsin (TMPRSS1)

TMPRSS 2

TMPRSS 3

TMPRSS 4

TMPRSS 13

Enteropeptidase

Spinesin

Matriptase

Matriptase

Matriptase 2

Matriptase 3

Polyserase

Corin Corin

1.2.2. Matriptase

Matriptase (MT-ST1, ST14) gene is located on human chromosome 11q24-25, and 855 amino acids are encoded in the

gene . The molecular weight of matriptase is 80–90-kda. Matriptase was first discovered in breast cancer cell line

(T-47D) and purified from human milk . It is expressed in human epithelial cells of various organs to maintain the

formation of epithelial barrier formation . In addition, the major enzymatic functions are reported as follows: 1)

activation of hepatocyte growth factor zymogen (pro-HGF), pro-platelet-derived growth factor (PDGF)-C, -D, and pro-

macrophage stimulating protein (MSP); 2) activation of protease-activated receptor (PAR)-2; 3) activation of urokinase-

type plasminogen activator; 4) degradation of extracellular matrix; and 5) activation of prostasin, which is a

glycosylphosphatidylinositol (GPI)-anchored protease known to activate epithelial sodium channel (ENaC) .

Among TTSPs, matriptase has been reported as the most efficient activator of pro-HGF . HAIs are major

regulators of matriptase, and deregulation of matriptase activity facilitates cancer progression . Indeed,

matriptase expression is reported to be upregulated in various cancers (breast, ovarian, uterine, colon, cervical, skin,

pancreatic, esophageal, head and neck, prostate, bladder and renal cell carcinoma: RCC) with poor prognosis 

.

1.2.3. Hepsin

Hepsin (HPN, TMPRSS1) gene is located on human chromosome 19q13.11, and 417 amino acids are encoded .

The molecular weight of hepsin protein is 45-kda. Although mRNA is highly expressed in liver and kidney, ubiquitous

expression of the protein is reported . The functions are reported as follows: 1) activation of pro-HGF; 2) activation

of pro-MSP; 3) activation of pro-urokinase-type plasminogen activator; and 4) cleavage of laminin-332 . Similar to

matriptase, the catalytic activities of hepsin are regulated by HAI-1 and HAI-2 . In cancer, overexpression of

hepsin mRNA is reported in prostate, ovary, kidney, and breast . Increased expression of the protein is also

reported in prostate, ovarian, breast, and endometrial cancer .

1.2.4. Regulators of TTSPs—HAIs
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HAI-1 (SPINT-1) gene is located at 15q 15.1 and HAI-2 (SPINT-2) is located at 19q 13.2 . Both proteins were

initially identified in conditioned medium of human gastric cancer cell line MKN45 . HAI-2 was also purified as

placental bikunin from placenta . The proteins have two specific extracellular Kunitz-type serine protease

inhibitor domains, (KD)-1 and KD-2, except for a splicing variant of HAI-2 (isoform B has single KD) (Figure 3), which can

inhibit several trypsin-like serine proteases, including all pro-HGF-activating enzymes . Whereas, HAIs were

initially discovered as HGFA inhibitors, they also inhibit matriptase and hepsin . In addition, HAIs are required for

intracellular transport and cell surface localization of matriptase in several types of cells . HAI-1 is reported to

express in the majority of normal epithelial cells . In physiological condition, HAI-1 maintains epithelial integrity

through regulation of matriptase activity . HAI-1 is also required for placental differentiation, embryonic

development and postnatal survival . However, it has been reported that insufficient expression revealed

dysregulation of pro-HGF activating enzymes in various cancers leading to progression . Indeed, decreased

expression of HAI-1 induced carcinogenesis (skin, intestine) and progression with worse prognosis (gastrointestinal,

breast, ovarian, endometrial cancers and RCC) . In addition, HAI-1 is also known as

a suppressor of epithelial mesenchymal transition (EMT) .

Figure 3. Structures of hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2 are shown. HAIs show single-pass

transmembrane protein with intracellular carboxy-terminus and extracellular specific protease inhibitor domains, the so-

called Kunitz domain (KD). HAI-1 is composed of two KDs, L domain, and motif at N terminus with seven cysteines

(MANSC) domains. There are two isoforms in HAI-2. Similar to HAI1, HAI-2 isoform A has two KDs, whereas isoform B

has a single KD.

HAI-2 is ubiquitously expressed in normal cells, including epithelial, mesenchymal, blood cells and trophoblasts . HAI-2

is reported to maintain the integrity of intestinal epithelium through regulation of matriptase-induced epithelial cell

adhesion molecule (EpCAM) cleavage . Downregulation by hypermethylation of SPINT2 gene has been reported in

several cancers, including hepatocellular carcinoma, RCC, melanoma, gastric carcinoma, and esophageal squamous cell

carcinoma . Expression of HAI-2 is also decreased in PC. However, no apparent SPINT2 promoter methylation

has been observed in either clinical samples or cell lines . In this report, the authors suggest that posttranslational

regulation of HAI-2 expression is essential in prostate cancer. The regulatory role of HAI-2 in the activation of pro-HGF by

inhibiting the activating proteases (including matriptase), which induces HGF/MET signaling axis, has been considered a

major suppressive function in cancer progression . Additionally, an alternative function such as the activation of

caspase 3 in esophageal squamous cell carcinoma leading to the promotion of apoptosis and inhibition of proliferation

was also reported . However, HAI-2 has also been reported to be required for invasive growth in oral squamous cell

carcinoma, which suggests that the role of HAI-2 may be tissue or cell-type specific and dependent on targeting TTSPs

.
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