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Isothiocyanates (ITCs) are biologically active molecules found in several natural products and pharmaceutical ingredients.

Moreover, due to their high and versatile reactivity, they are widely used as intermediates in organic synthesis.This review

considers the best practices for the synthesis of ITCs using elemental sulfur, highlighting recent developments.

Additionally, we also reveal that in the catalyst‑free reaction of isocyanides and sulfur, two—until this time overlooked and

not investigated—different mechanistic pathways exist.
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1. Introduction

Isothiocyanates (ITCs) are biologically active molecules occurring in cruciferous vegetables such as broccoli, watercress,

cabbage and cauliflower suggested to have anti-tumour activity . They are represented among natural products and

pharmaceutical ingredients by the biologically relevant welwitindolinone and hapalindole alkaloids isolated from various

algae species . Notably, glucosinolates, found as secondary metabolites in almost all plants, contain the –S-C=N-

functional group and act as a precursor for various ITCs . Tissue damage of the plant promotes myrosinase enzyme

activity as a defence mechanism, triggering the degradation of glucosinolates, and releasing, e.g., allyl, benzyl or

phenethyl ITC or sulforaphane . Sulforaphane, in particular, showed neuroprotective activity in the treatment of the

neurodegenerative Alzheimer’s and Parkinson’s diseases . Moreover, ITCs express significant antiproliferative activity

as well , and the anti-microbial nature of certain ITCs makes them useful in food preservation . Recently, they have

also been applied as covalent warheads for labelling cysteine or lysine residues in medicinal chemistry and chemical

biology applications . Notably, due to their high and versatile reactivity, they are widely used as intermediates

in organic synthesis . ITCs readily react with nucleophiles, participate in cycloadditions leading to diverse

heterocycles or are used in polymer chemistry .

The synthesis of ITCs generally relies on the reaction between thiophosgene or CS  and amines and thus involves the

use of highly toxic reagents with narrow functional group compatibility . Various thiocarbonyl transfer

reagents appeared in recent decades to overcome these drawbacks, such as thiocarbonyl-diimidazole or dipyridin-2-

yloxymethanethione . Decomposition of thiocarbamates or dithiocarbamate salts with various reagents offers a good

alternative as well; however, this approach first requires the synthesis of the appropriate precursors .

Nitrile oxides react with thiourea to afford ITCs and harmless urea, but one should note that the instability of nitrile oxides

leads to many by-products, rendering this approach less attractive . The reaction of isocyanides with disulfides in the

presence of thallium (I)-salts as catalysts also leads to the formation of ITCs . This area has been reviewed recently

; thus, in this review, we focus solely on sulfur-based synthetic methods, which greatly emerged in recent years

(Scheme 1). Elemental sulfur acts as the most atom-efficient surrogate to integrate the sulfur atom into the product 

. The process is based on the nucleophilic attack of in situ generated carbene functionalities (1) on sulfur that behaves

as an electrophile due to its empty d-orbitals . This approach leads to thiocarbonyl surrogates (2), usually

dihalogenides, reacting with primary amines (3) to provide ITCs (4). Otherwise, isocyanides (5), where the terminal carbon

atom is able to act as a carbene, also undergo reaction with sulfur under thermal conditions or in the presence of external

additives to yield ITCs. Notably, the addition of sulfur to formaldimines was also reported to generate ITCs, but this

method is barely used nowadays . The convenient activation of sulfur by nucleophilic additives, such as aliphatic

amines and hydroxyl, sulfide and cyanide anions , and the corresponding significantly milder conditions compared to

thermal activation support the notion that a switched mechanism also exists, involving a nucleophilic sulfur anion (S )

and the carbene of the isocyanide (5) acting as an electrophile (Scheme 2). The experimental findings from the research

of Al-Mourabit et al. and Meier et al. and those found by our research group also support this latter presumption 

. The exact number or the distribution of sulfur atoms in the forming anions was investigated experimentally and

theoretically as well, suggesting that it depends on the reaction conditions and reactants .
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Scheme 1. The most popular reaction pathways to ITCs (4) involving elemental sulfur.

Scheme 2. Nucleophilic activation of sulfur, inducing the transformation of isocyanide (5) to ITC (4).

2. Overview and Practical Considerations of the Discussed Methods

Table 1 provides a comparison between the discussed synthetic approaches starting from amines or isocyanides with

sulfur. When designing a multistep synthesis plan, depending on the stability of the substrate, one should consider the

nature of additives, solvent, temperature and inert conditions if necessary. Generally, reactions involving difluorocarbene

or thiocarbonyl fluoride require inert conditions, while isocyanide can be transformed to ITC under less strict conditions.

The modification of amines is most effective using PDFA, but in the case of sensible compounds, one may turn to the

room temperature approach involving F CSiMe  as a carbene source. The presence of potassium fluoride, however, may

result in the removal of silyl groups on a complex structure, and a copper catalyst might lead to side coupling reactions

and waste containing transition metals. Selenium and tellurium should be handled with care due to toxicity, while Mo or Rh

catalysts increase the price and, again, transition metals in the waste. ITC formation from isocyanides, on the other hand,

is very effective in the presence of bases. This approach can be performed in a relatively short reaction time compared to

the transition metal-catalyzed pathways, even under aqueous conditions. Based on the scope of substrates in the

reported methods, one may note that all approaches provide ITCs in good to excellent yields. Challenging derivatives

might be trityl ITC, generally obtained in lower yields, presumably because of steric hindrance, and low-molecular weight

aliphatic ITCs, such as tert-butyl ITC due to its volatile nature.

Table 1. Summary of methods for ITC synthesis with the application of elemental sulfur

Ref. Starting
Material Additive Inert

Atmosphere Solvent T
(°C)

T
(h)

Yield
(%)

Amine

PDFA Yes DME 80 0.083 21–97

F CSiMe  + KF Yes THF rt 1–12 31–96

BrF CCOOK + 5 mol% CuI, K PO No MeCN 100 12 38–87

Isocyanide

5 mol% Se or 0.02 mol% Te No THF reflux 0.5–8 53–99

“Mo” (X) No acetone reflux 72 61–93

“Rh” (X) Yes acetone reflux 1.5–8 83–96

2 eq. NaH Yes THF 40 2 85
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Ref. Starting
Material Additive Inert

Atmosphere Solvent T
(°C)

T
(h)

Yield
(%)

2–5 mol% DBU No Cyrene
or GBL

40 4–24 34–95

3. Conclusions and Outlook

ITCs are a biologically and synthetically relevant functional group, being present in important metabolites, natural products

and synthetic intermediates. Their efficient and clean synthesis is of high interest, leading to the appearance of several

recent methods. In particular, there are two strategies involving elemental sulfur for the incorporation of the sulfur atom,

offering practical and modern approaches. The in situ generation of thiocarbonyl fluoride from difluorocarbene and sulfur

provides ITCs with primary amines, or sulfuration of isocyanides may directly lead to ITCs under thermal-, catalytic- or

nucleophile-induced conditions. Based on previous literature data and our recent results, we highlighted mechanistic

insights into the latter transformation. Besides the conventional nucleophilic carbene and electrophilic sulfur setup, a

switched mechanism is also proposed, where the polysulfide anions activated by a nucleophile are able to transform the

isocyanide to ITC. This approach offers an efficient, mild and green synthesis of ITCs. We expect that this spotlight on ITC

synthesis revealing different mechanistic pathways will inspire further research in the field and open up novel synthetic

methodologies due to a deeper understanding.
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