

Co-CeO₂ Catalyzed Water-Gas Shift Reaction

Subjects: **Others**

Contributor: Kyoung-Jin Kim , Yeol-Lim Lee , Hyun-Suk Na , Seon-Yong Ahn , Jae-Oh Shim , Byong-Hun Jeon , Hyun-Seog Roh

Co-CeO₂ catalysts were synthesized by the different methods to derive the optimal synthetic method and to investigate the effect of the preparation method on the physicochemical characteristics of Co-CeO₂ catalysts in the high-temperature water-gas shift (HTS) reaction. Co-CeO₂ catalyst synthesized by a sol-gel method features the strong metal to support interaction and the largest amount of oxygen vacancies compared to other catalysts, which affects the catalytic activity. As a result, Co-CeO₂ catalyst synthesized by the sol-gel method exhibited the highest WGS activity among the prepared catalysts, even in the severe conditions (high CO concentration: ~38% in dry basis and high gas hourly space velocity: 143,000 h⁻¹).

waste-derived synthesis gas

high-temperature water-gas shift

Co-CeO₂ catalyst

preparation method

oxygen vacancy

1. Introduction

Economic development and population growth have increased the amount of globally generated waste, which is expected to rise from 2.0 billion tons per year in 2016 to 3.4 billion tons per year in 2050 [1][2]. Consequently, much attention has been directed at the development of waste to energy technologies such as waste gasification to reduce the extent of landfill depletion, environmental pollution, and waste treatment costs [3][4][5]. Notably, waste gasification can reduce waste mass (by ~80%) and volume (by ~90%), save landfill space, and decrease the emission of pollutants such as NO_x and SO_x [3].

Waste gasification typically affords synthesis gas (H₂ and CO), which can be used to generate value-added products such as synthetic crude oil, methanol, and dimethyl ether, and can also be employed as a substitute of reformed natural gas for pure H₂ production through the water-gas shift (WGS) reaction (CO + H₂O → CO₂ + H₂) [4][6][7][8][9].

The growing importance of fuel-cell-based vehicles and related devices has increased the demand for H₂, used as a fuel in fuel cells [10][11][12][13]. However, more than 96% of H₂ is generated from natural gas- and petroleum-derived sources (i.e., from fossil fuels), which highlights the need for practical alternative sources such as waste. In particular, combustible waste with minimum calorific value (4000–5000 kcal kg⁻¹) can be gasified to afford synthesis gas containing CO (~38%) and H₂ (~28%), along with relatively small amounts of CH₄, CO₂, N₂, and other impurities [14].

The WGS reaction is exothermic and is thus favored by low temperatures. Therefore, according to thermodynamic limitations and kinetic aspects, the WGS reaction can be conducted in two distinct temperature ranges, namely at 350–550 °C (high-temperature shift, HTS) over Fe₂O₃–Cr₂O₃ and at 190–250 °C (low-temperature shift, LTS) over CuO–ZnO–Al₂O₃ [15][16]. Due to the high outlet temperature of the waste gasification process (>500 °C), HTS is better suited for H₂ production through waste gasification than LTS [17][18]. However, commercial Fe₂O₃–Cr₂O₃ catalysts are not suitable for the HTS reaction of waste-derived synthesis gas, as the high CO levels of this feedstock (~38% CO, cf. ~9% CO of natural gas-derived synthesis gas) may lead to rapid catalyst deactivation [19]. Hence, customized catalysts for waste-derived synthesis gas processing are highly sought after. Furthermore, upon operation, Cr³⁺ present in fresh Fe₂O₃–Cr₂O₃ catalysts is oxidized to Cr⁶⁺, which may leach out from spent catalysts to cause environmental and health problems [8][20]. For this reason, the replacement of Cr for other metals in commercial HTS catalysts is also required [21].

2. Result

Previously, we have developed a Co-based catalyst for H₂ production from waste-derived synthesis gas via the HTS reaction, showing that this catalyst exhibits high activity in a wide temperature range and at high gas hourly space velocity (GHSV) to demonstrate the feasibility of using Cr-free catalysts [22][23][24][25]. Compared to the unsupported Co₃O₄ catalyst, CeO₂-supported Co catalysts featured enhanced stability and redox activity [22][23]. This behavior was attributed to the strong interaction between Co and the CeO₂ support, which prevented the sintering of the Co⁰ active phase [17][25]. In addition, the large amount of oxygen defects in the Co–CeO₂ catalyst resulted in high CO conversion [24].

In general, CeO₂ is known as an active substance that drives water dissociation in the WGS reaction. Additionally, it shows unique redox properties and promotes the formation of oxygen vacancies. The formation of oxygen vacancies can be interpreted as the generation of mobile oxygen on the CeO₂ surface, improving the catalytic activity in the WGS reaction [22]. In addition, CeO₂ features the improved oxidative strength and photoelectronic activity due to unique solid-state reactivity of Ce [26]. Arena et al. developed the nanocomposite MnCeO_x catalyst, and proved that Ce promotes the dispersion of the active metals and the exposure of the active sites at the surface of the catalyst [27][28][29][30][31]. As has been widely reported, the use of CeO₂, which has unique properties in a variety of catalytic chemical reactions including the WGS reaction, is prevalent. Accordingly, changes in redox properties and oxygen storage capacity (OSC) of catalysts by applying the Ce have been investigated in various literatures. The Co₃O₄ catalyst for total oxidation of propene enhanced the mobility of lattice oxygen by applying the CeO₂ support, and the mobile oxygen reacts with the propene, showing high catalytic activity [32]. Au/CeO₂–ZnO/Al₂O₃ catalyst showed excellent performance in the WGS reaction because of the enhanced oxygen storage capacity and reducibility [33]. The Au/Co_x/CeO₂–Al₂O₃ catalyst showed outstanding activity in the CO oxidation reaction due to the superior redox properties and oxygen storage/release properties of CeO₂ [34].

Many attempts have been made to enhance catalyst performance through the optimization of preparation methods [35][36][37][38][39][40][41][42]. Wang et al. prepared MgAl catalysts for dehydroxylation by a sol-gel technique, showing that the generation of oxygen defects is influenced by the choice of synthesis method [35]. Kakihana et al. observed

that the sol-gel method affords catalysts with higher homogeneity/purity in the form of powders with submicron particle size [36]. In addition, the sol-gel method has also been reported to be highly economical because of the reduced catalyst preparation time and cost [37]. Avgouropoulos et al. ascribed the improved catalytic performance of hydrothermally prepared CuO–CeO₂ catalysts for the selective CO oxidation to the high dispersion of CuO and its strong interaction with the CeO₂ support [38]. The enhanced CO oxidation activity of the co-precipitation-prepared catalyst was attributed to the increased surface area of CeO₂ and the enhanced redox properties due to Ce–Fe–O solid solution formation [39]. Megarajan et al. claimed that the high diesel soot oxidation activity of a Co₃O₄–CeO₂ catalyst prepared by incipient wetness impregnation was due to the high dispersion of Co₃O₄ nanoparticles on the CeO₂ support [40]. Although the preparation method strongly affects catalyst performance, no related research has been conducted in the case of Co-based catalysts for the HTS reaction using waste-derived synthesis gas.

In the present study (<https://doi.org/10.3390/catal10040420>), we probed the effects of the preparation method (sol-gel, co-precipitation, incipient wetness impregnation, and hydrothermal) on the physicochemical characteristics of Co-CeO₂ catalysts and established an optimal preparation method by comparing their activities for the HTS reaction using waste-derived synthesis gas.

Co-CeO₂ catalysts prepared by various synthetic methods were used to promote the HTS reaction of waste-derived synthesis gas, with the best performance observed for Co-CeO₂ catalyst prepared by sol-gel (SG), even under harsh conditions (GHSV = 143,000 h⁻¹, CO level = 38.2%). The high performance of Co-CeO₂ (SG) catalyst was explained as follows. First, oxygen vacancy concentration affects the HTS reaction. Raman spectroscopy, XPS, and H₂-O₂ pulse reaction results showed that Co-CeO₂ (SG) catalyst had the highest concentration of oxygen vacancies among the prepared catalysts. As the WGS reaction primarily proceeds through a redox mechanism, it is strongly influenced by the concentration of oxygen vacancies. Second, the SMSI effect is important for catalytic reactions. According to TPR results, the CoO reduction temperature was highest for Co-CeO₂ (SG) catalyst, which was ascribed to the SMSI of this catalyst. As a result, the Co-CeO₂ (SG) catalyst showed the outstanding catalytic activity in the HTS reaction despite the extremely high GHSV and CO concentration.

References

1. Kaza, S.; Yao, L.; Bhada-Tata, P.; Woreden, F.V. *What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050*, 1st ed.; World Bank: Washington, DC, USA, 2018; pp. 1–292. [Google Scholar]
2. Wilson, D.C.; Rodic, L.; Modak, P.; Soos, R.; Carpintero, A.; Velis, K.; Iyer, M.; Simonett, O. *Global Waste Management Outlook*; United Nations Environment Programme: Nairobi, Kenya, 2015; pp. 1–332. [Google Scholar]

3. Arena, U. Process and technological aspects of municipal solid waste gasification. A review. *Waste Manag.* 2012, 32, 625–639. [Google Scholar] [CrossRef] [PubMed]
4. Pereira, E.G.; Silva, J.N.; Oliveira, J.L.; Machado, C.S. Sustainable energy: A review of gasification technologies. *Renew. Sust. Energ. Rev.* 2012, 16, 4753–4762. [Google Scholar] [CrossRef]
5. Jang, W.-J.; Shim, J.-O.; Jeon, K.-W.; Na, H.-S.; Kim, H.-M.; Lee, Y.-L.; Roh, H.-S.; Jeong, D.-W. Design and scale-up of a Cr-free Fe-Al-Cu catalyst for hydrogen production from waste-derived synthesis gas. *Appl. Catal. B Environ.* 2019, 249, 72–81. [Google Scholar] [CrossRef]
6. Fan, M.-S.; Abdullah, A.Z.; Bhatia, S. Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas. *ChemCatChem.* 2009, 1, 192–208. [Google Scholar] [CrossRef]
7. Koo, K.Y.; Lee, S.-H.; Jung, U.H.; Roh, H.-S.; Yoon, W.L. Syngas production via combined steam and carbon dioxide reforming of methane over Ni–Ce/MgAl₂O₄ catalysts with enhanced coke resistance. *Fuel Process. Technol.* 2014, 119, 151–157. [Google Scholar] [CrossRef]
8. Jha, A.; Jeong, D.-W.; Lee, Y.-L.; Jang, W.-J.; Shim, J.-O.; Jeon, K.-W.; Rode, C.V.; Roh, H.-S. Chromium free high temperature water–gas shift catalyst for the production of hydrogen from waste derived synthesis gas. *Appl. Catal. A Gen.* 2016, 522, 21–31. [Google Scholar] [CrossRef]
9. Jang, W.-J.; Shim, J.-O.; Kim, H.-M.; Yoo, S.-Y.; Roh, H.-S. A review on dry reforming of methane in aspect of catalytic properties. *Catal. Today.* 2019, 324, 15–26. [Google Scholar] [CrossRef]
10. Jeon, K.-W.; Na, H.-S.; Lee, Y.-L.; Ahn, S.-Y.; Kim, K.-J.; Shim, J.-O.; Jang, W.-J.; Jeong, D.-W.; Nah, I.W.; Roh, H.-S. Catalytic deoxygenation of oleic acid over a Ni-CeZrO₂ catalyst. *Fuel* 2019, 258, 116179–116186. [Google Scholar] [CrossRef]
11. Ventura-Espinosa, D.; Sabater, S.; Carretero-Cerdán, A.; Baya, M.; Mata, J.A. High Production of Hydrogen on Demand from Silanes Catalyzed by Iridium Complexes as a Versatile Hydrogen Storage System. *ACS Catal.* 2018, 8, 2558–2566. [Google Scholar] [CrossRef]
12. Ismagilov, Z.R.; Matus, E.V.; Ismagilov, I.Z.; Sukhova, O.B.; Yashnik, S.A.; Ushakov, V.A.; Kerzhentsev, M.A. Hydrogen production through hydrocarbon fuel reforming processes over Ni based catalysts. *Catal. Today.* 2019, 323, 166–182. [Google Scholar] [CrossRef]
13. Kurtz, J.; Sprik, S.; Bradley, T.H. Review of transportation hydrogen infrastructure performance and reliability. *Int. J. Hydrogen Energ.* 2019, 44, 12010–12023. [Google Scholar] [CrossRef]
14. Shim, J.-O.; Na, H.-S.; Jha, A.; Jang, W.-J.; Jeong, D.-W.; Nah, I.W.; Jeon, B.-H.; Roh, H.-S. Effect of preparation method on the oxygen vacancy concentration of CeO₂-promoted Cu/y-Al₂O₃ catalysts for HTS reactions. *Chem. Eng. J.* 2016, 306, 908–915. [Google Scholar] [CrossRef]

15. Jha, A.; Jeong, D.-W.; Shim, J.-O.; Jang, W.-J.; Lee, Y.-L.; Rode, C.V.; Roh, H.-S. Hydrogen production by the water-gas shift reaction using CuNi/Fe₂O₃ catalyst. *Catal. Sci. Technol.* 2015, 5, 2752–2760. [Google Scholar] [CrossRef]
16. Shim, J.-O.; Na, H.-S.; Ahn, S.-Y.; Jeon, K.-W.; Jang, W.-J.; Jeon, B.-H.; Roh, H.-S. An important parameter for synthesis of Al₂O₃ supported Cu-Zn catalysts in low-temperature water-gas shift reaction under practical reaction condition. *Int. J. Hydrogen Energ.* 2019, 44, 14853–14860. [Google Scholar] [CrossRef]
17. Lee, Y.-L.; Jha, A.; Jang, W.-J.; Shim, J.-O.; Rode, C.V.; Jeon, B.-H.; Bae, J.W.; Roh, H.-S. Effect of alkali and alkaline earth metal on Co/CeO₂ catalyst for the water-gas shift reaction of waste derived synthesis gas. *Appl. Catal. A Gen.* 2018, 551, 63–70. [Google Scholar] [CrossRef]
18. Jha, A.; Jeong, D.-W.; Jang, W.-J.; Lee, Y.-L.; Roh, H.-S. Hydrogen production from water–gas shift reaction over Ni–Cu–CeO₂ oxide catalyst: The effect of preparation methods. *Int. J. Hydrogen Energ.* 2015, 40, 9209–9216. [Google Scholar] [CrossRef]
19. Jeong, D.-W.; Jang, W.-J.; Shim, J.-O.; Han, W.-B.; Jeon, K.-W.; Seo, Y.-C.; Roh, H.-S.; Gu, J.H.; Lim, Y.T. A comparison study on high-temperature water–gas shift reaction over Fe/Al/Cu and Fe/Al/Ni catalysts using simulated waste-derived synthesis gas. *J. Mater. Cycles Waste.* 2014, 16, 650–656. [Google Scholar] [CrossRef]
20. Jeong, D.-W.; Jang, W.-J.; Jha, A.; Han, W.-B.; Jeon, K.-W.; Kim, S.-H.; Roh, H.-S. The Effect of Metal on Catalytic Performance over MFe₂O₄ Catalysts for High Temperature Water-Gas Shift Reaction. *J. Nanoelectron. Optoe.* 2015, 10, 530–534. [Google Scholar] [CrossRef]
21. Lee, D.-W.; Lee, M.S.; Lee, J.Y.; Kim, S.; Eom, H.-J.; Moon, D.J.; Lee, K.-Y. The review of Cr-free Fe-based catalysts for high-temperature water-gas shift reactions. *Catal. Today.* 2013, 210, 2–9. [Google Scholar] [CrossRef]
22. Jha, A.; Jeong, D.-W.; Lee, Y.-L.; Nah, I.W.; Roh, H.-S. Enhancing the catalytic performance of cobalt oxide by doping on ceria in the high temperature water–gas shift reaction. *RSC Adv.* 2015, 5, 103023–103029. [Google Scholar] [CrossRef]
23. Jha, A.; Lee, Y.-L.; Jang, W.-J.; Shim, J.-O.; Jeon, K.-W.; Na, H.-S.; Kim, H.-M.; Roh, H.-S.; Jeong, D.-W.; Jeon, S.G.; et al. Effect of the redox properties of support oxide over cobalt-based catalysts in high temperature water-gas shift reaction. *Mol. Catal.* 2017, 433, 145–152. [Google Scholar] [CrossRef]
24. Lee, Y.-L.; Jha, A.; Jang, W.-J.; Shim, J.-O.; Jeon, K.-W.; Na, H.-S.; Kim, H.-M.; Lee, D.-W.; Yoo, S.-Y.; Jeon, B.-H.; et al. Optimization of Cobalt Loading in Co-CeO₂ Catalyst for the High Temperature Water–Gas Shift Reaction. *Top. Catal.* 2017, 60, 721–726. [Google Scholar] [CrossRef]

25. Lee, Y.-L.; Kim, K.-J.; Jang, W.-J.; Shim, J.-O.; Jeon, K.-W.; Na, H.-S.; Kim, H.-M.; Bae, J.W.; Nam, S.C.; Jeon, B.-H.; et al. Increase in stability of BaCo/CeO₂ catalyst by optimizing the loading amount of Ba promoter for high-temperature water-gas shift reaction using waste-derived synthesis gas. *Renew. Energ.* 2020, 145, 2715–2722. [Google Scholar] [CrossRef]

26. Fazio, B.; Spadaro, L.; Trunfio, G.; Negro, J.; Arena, F. Raman scattering of MnO_x–CeO_x composite catalysts: Structural aspects and laser-heating effects. *J. Raman Spectrosc.* 2011, 42, 1583–1588. [Google Scholar] [CrossRef]

27. Arena, F.; Trunfio, G.; Negro, J.; Spadaro, L. Synthesis of highly dispersed MnCeO_x catalysts via a novel “redox-precipitation” route. *Mater. Res. Bull.* 2008, 43, 539–545. [Google Scholar] [CrossRef]

28. Arena, F.; Chio, R.D.; Filiciottoa, L.; Trunfio, G.; Espro, C.; Palella, A.; Patti, A.; Spadaro, L. Probing the functionality of nanostructured MnCeO_x catalysts in the carbon monoxide oxidation Part II. Reaction mechanism and kinetic modelling. *Appl. Catal. B Environ.* 2017, 218, 803–809. [Google Scholar] [CrossRef]

29. Arena, F.; Chio, R.D.; Espro, C.; Palella, A.; Spadaro, L. A definitive assessment of the CO oxidation pattern of a nanocomposite MnCeO_x catalyst. *React. Chem. Eng.* 2018, 3, 293–300. [Google Scholar] [CrossRef]

30. Arena, F.; Chio, R.D.; Espro, C.; Fazio, B.; Palella, A.; Spadaro, L. A New Class of MnCeO_x Materials for the Catalytic Gas Exhausts Emission Control: A Study of the CO Model Compound Oxidation. *Top. Catal.* 2019, 62, 259–265. [Google Scholar] [CrossRef]

31. Arena, F.; Famulari, P.; Interdonato, N.; Bonura, G.; Frusteri, F.; Spadaro, L. Physico-chemical properties and reactivity of Au/CeO₂ catalysts in total and selective oxidation of CO. *Catal. Today.* 2006, 116, 384–390. [Google Scholar] [CrossRef]

32. Liotta, L.F.; Ousmane, M.; Carlo, G.D.; Pantaleo, G.; Deganello, G.; Marcì, G.; Retailleau, L.; Giroir-Fendler, A. Total oxidation of propene at low temperature over Co₃O₄–CeO₂ mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity. *Appl. Catal. A Gen.* 2008, 347, 81–88. [Google Scholar] [CrossRef]

33. Reina, T.R.; Ivanova, S.; Delgado, J.J.; Ivanov, I.; Idakiev, V.; Tabakova, T.; Centeno, M.A.; Odriozola, J.A. Viability of Au/CeO₂–ZnO/Al₂O₃ Catalysts for Pure Hydrogen Production by the Water–Gas Shift Reaction. *ChemCatChem.* 2014, 6, 1401–1409. [Google Scholar] [CrossRef]

34. Reina, T.R.; Moreno, A.A.; Ivanova, S.; Odriozola, J.A.; Centeno, M.A. Influence of Vanadium or Cobalt Oxides on the CO Oxidation Behavior of Au/MO_x/CeO₂–Al₂O₃ Systems. *ChemCatChem.* 2012, 4, 512–520. [Google Scholar] [CrossRef]

35. Wang, J.A.; Morales, A.; Bokhimi, X.; Novaro, O.; López, T.; Gómez, R. Cationic and Anionic Vacancies in the Crystalline Phases of Sol–Gel Magnesia–Alumina Catalysts. *Chem. Mater.*

1999, 11, 308–313. [Google Scholar] [CrossRef]

36. Kakihana, M. Invited review “sol-gel” preparation of high temperature superconducting oxides. *J. Sol-Gel Sci. Techn.* 1996, 6, 7–55. [Google Scholar] [CrossRef]

37. Shojaie-Bahaabad, M.; Taheri-Nassaj, E. Economical synthesis of nano alumina powder using an aqueous sol–gel method. *Mater. Lett.* 2008, 62, 3364–3366. [Google Scholar] [CrossRef]

38. Avgouropoulos, G.; Ioannides, T.; Matralis, H. Influence of the preparation method on the performance of CuO–CeO₂ catalysts for the selective oxidation of CO. *Appl. Catal. B Environ.* 2005, 56, 87–93. [Google Scholar] [CrossRef]

39. Qiao, D.; Lu, G.; Liu, X.; Guo, Y.; Wang, Y.; Guo, Y. Preparation of Ce_{1-x}FexO₂ solid solution and its catalytic performance for oxidation of CH₄ and CO. *J. Mater. Sci.* 2011, 46, 3500–3506. [Google Scholar] [CrossRef]

40. Megarajan, S.K.; Rayalu, S.; Teraoka, Y.; Labhsetwar, N. High NO oxidation catalytic activity on non-noble metal based cobalt-ceria catalyst for diesel soot oxidation. *J. Mol. Catal. A Chem.* 2014, 385, 112–118. [Google Scholar] [CrossRef]

41. Na, H.-S.; Ahn, S.-Y.; Shim, J.-O.; Jeon, K.-W.; Kim, H.-M.; Lee, Y.-L.; Jang, W.-J.; Jeon, B.-H.; Roh, H.-S. Effect of precipitation on physico-chemical and catalytic properties of Cu-Zn-Al catalyst for water-gas shift reaction. *Korean J. Chem. Eng.* 2019, 36, 1243–1248. [Google Scholar] [CrossRef]

42. Shim, J.-O.; Jeon, K.-W.; Jang, W.-J.; Na, H.-S.; Cho, J.-W.; Kim, H.-M.; Lee, Y.-L.; Jeong, D.-W.; Roh, H.-S.; Ko, C.H. Facile production of biofuel via solvent-free deoxygenation of oleic acid using a CoMo catalyst. *Appl. Catal. B Environ.* 2018, 239, 644–653.

Retrieved from <https://encyclopedia.pub/entry/history/show/8307>