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Standard driving cycles (DCs) and real driving emissions (RDE) legislation developed by the European Commission

contains significant gaps with regard to quantifying local area vehicle emission levels and fuel consumption (FC). The aim

of this paper was to review local DCs for estimating emission levels and FC under laboratory and real-world conditions.

This review article has three sections.
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1. Introduction

Exhaust emissions from vehicles present a serious risk in urban areas, affecting air quality and human health . Vehicle

emissions are influenced by numerous issues such as driving style, traffic congestion, emission control devices, vehicle

performance, fuel quality, and ambient operating conditions .

The DC has been defined by various authors as “a series of data points representing speed versus time, and gear

selection as a function of time, speed versus distance in a specific region, or a part of a road segment”  and “a speed-

time profile for a study area within which a vehicle can be idling, accelerating, decelerating, or cruising” . The most

important functions of vehicle driving cycles are to determine emission levels and FC , evaluate vehicle performance

, estimate driving style , and simulate driving circumstances on a laboratory chassis dynamometer (CD) , which

provides the basis for vehicle design . For electric vehicles, the driving range calculation and state of charge estimation

are generally performed on the basis of the standard driving cycle .

The Japanese driving cycle JC08 shown in Figure 1 has been used for emission certification of PCs and light-duty trucks

since 2011 . JC08 is highly transient with a minimum cruising time and long idling period, with a cold start weighted at

25% and a hot start at 75% .

Figure 1. FTP75, JC08, and WLTC for class 3a vehicles (Source of data points ).

The CD and emission model software is used most to determine vehicle emission factors. However, in recent years,

researchers have found a significant gap in emissions reported using the above two methods. Measuring vehicular

emissions on a CD involves driving a vehicle through a predetermined DC  by a human driver, with a device known

as a driver’s aid informing the driver how to drive the vehicle, including speed tolerances around the target speed trace
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. During this test, the exhaust flow rate is continuously monitored, and the exhaust gas is collected in sample bags for

subsequent analysis of content and concentration after dilution with ambient air. A constant volume sampler (CVS) system

based on a CD is displayed in Figure 2 .

Figure 2. Experimental set-up of a CD for measuring emissions and FC .

2. Driving Cycle Development Process

For the accurate development of DCs, a large sample of representative driving data is required . Among the current

technologies, GPS and an on-board diagnostics (OBD) interface are the most common instruments for the collection of

driving data.

GPS: provides data on a vehicle’s velocity, time, date, latitude, longitude, and altitude. Galgamuwa et al. (2016) used the

on-board measurement method with five GPS devices for data collection in the study area, collecting data on 78 trips at

one-second intervals . GPS-based data collection has the advantages of being small and easy to carry on vehicles,

device installation and operation not affecting the operation of a vehicle, good signal reception, bulk data storage, and

being a high-frequency data acquisition system . A similar approach was taken by  for data collection

using GPS.

Duran and Earleywine (2018) applied seven logic-based filters for the filtration process to remove duplicated records and

negative differential time steps, replace outlying high/low-speed values, remove zero-speed signal drift when the vehicle

stopped, replace false zero-speed records, amend gaps in data, repair outlying acceleration or deceleration values, and

denoise and smooth final signals using the Savitzky–Golay filter technique .

Huertas et al. (2018) disregarded trip data that were missing typical values with less than 90% of available data. Rather

than fixing missing values, they ignored the data .

3. Comparison of RDE Tests with Laboratory-Based and Real-World
Emissions

Conducting emission tests on a chassis dynamometer (CD) is standard practice for comparing the vehicle’s emissions

and verifying whether they remain under the emission limit, as per standards. However, CD tests suffer from shortcomings

associated with their non-representativeness of actual on-road driving conditions. Comparison of RDE with laboratory-

based cycles (WLTC, FTP75, and CADC) is presented in Table 1.

Table 1. Comparison of RDE with laboratory-based cycles (WLTC, FTP75, and CADC).
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NM—Not mentioned, NC—Not clear, CI—Compression ignition, SI—Spark Ignition, LDVs—Light Duty Vehicles, DOC—

Diesel Oxidation Catalyst, DPF—Diesel Particulate Filter, EGR—Exhaust Gas Recirculation, SCR—Urea solution refill,

TWC—Three Way Catalytic converter, and NS—NOx Storage system.

In urban areas, a cold start can significantly contribute to vehicles’ overall emissions and FC due to short trips and

frequent starts . Reduction in atmospheric temperature from 25 °C to 8 °C during a cold start (in the considered period

of 300 s) resulted in a 16% rise in CO 2 (FC), a 195% rise in CO, a 280% rise in PN, and an 11% decrease in NO X .

The EU RD exclusions of a cold start and idling decrease the emission of CO 2 in the urban drive mode by 8% and

leading to a decrease in CO emission by 18% . For diesel vehicles in a RDE test, trips between 5 and 10 °C have up to

30% differences in NO X emissions, but for gasoline vehicles, the difference is not as significant . CO 2 emissions are

highest during a cold start, by a factor of 1.6 and 1.3, at temperatures of −7 and +23 °C, respectively, when compared with

the warm start at +23 °C for a gasoline direct-injection vehicle equipped with a particulate filter, where the PN emission at

−7 °C was 2.6 times higher than the 23 °C at ambient temperature .

3. Effect of route selection on RDE
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In many metropolitan cities, traffic conditions are becoming more congested, and most passenger vehicles in developing

countries are operated more in congested traffic conditions and signalized intersections. In the EU’s RDE legislation, the

share of urban roads, rural roads, and motorways is nearly the same, but they contribute to different emission levels and

FC.

Williams et al. (2018) conducted RDE performance tests on three different test routes. Route 1 had the largest share of

urban driving section and, therefore, a lack of a motorway section; route 2 was equivalent to driving mainly on rural roads.

Route 3 was consistent with the EU’s RDE legislation. They found that the emission of CO increased in proportion to the

duration of the test, regardless of the type of test route used. They obtained higher CO and HC in those tests than within

the EU RDE test. Such a situation occurs when these tests are shorter and the urban and rural part makes up a larger

share in the whole test conducted. The authors confirmed that it is possible to shorten the test distance by about 20%

without a significant change in the results of specific distance exhaust emissions .

4. Conclusions

The DC is an important idea in quantifying vehicle emissions and FC, and it is expected to effectively represent real

vehicle driving patterns so as to obtain reliable estimates of vehicle emissions. The concern is growing about the gap

between actual driving conditions and the standard DCs used for vehicle certifications and regulatory authorities. A review

of recent and relevant studies on DCs quantifying vehicle emissions and FC has been undertaken. Local DCs were

analysed for their route selection, data collection approach, cycle formation methods, and cycle assessment parameters

and were compared with standard DCs. Lastly, the gaps between RDE and laboratory and real-world data were

discussed. After performing a comparative analysis of local DCs and standard DCs, the findings of this study are that: A

driving cycle that shows the highest coincidence with actual driving data from on-road vehicles is preferable for estimating

emission levels and fuel consumption. Therefore, typical or local driving cycles should be developed that reflect local

driving patterns or conditions that could be used for type approval tests of new and existing vehicles. Most of the reviewed

local DCs do not distinguish between separate phases of urban rods, rural roads, and motorways. Almost all the local DCs

reviewed do not identify shifting the strategy followed during the test on CD. Compared with WLTC, the local DCs are

capable of producing higher emissions and FC due to a higher acceleration time and greater representativeness of the

local DC at a particular place. The main problem associated with most developed local DCs is related to the small sample

size collected from a few vehicles within a short period of time. Researchers mostly used micro-trip and Markov chain

methods to construct a driving cycle for emission levels and fuel consumption, and recently, a new method called the fuel-

based approach has also been introduced.

Future studies on driving cycles should note the importance of route planning, bulk data collection, data filtration, and

selection of the most significant characteristic parameters. Furthermore, attention should be given to data collection time

including peak times, off-peak times, and weekends.

From the comparison of RDE with laboratory-based emissions measurement and real-world emissions, the conclusions of

this study are: RDE measured by PEMS are higher than laboratory-based measurements or CVS. RDE is not

reproducible as laboratory-based measurements and results are different within and outside the boundary conditions.

Under controlled laboratory conditions, PEMS resulted in higher emissions than CVS with low uncertainty; the major

causes of PEMS’ uncertainty are drift of the analyser over time and exhaust flow rate. The gap between RDE and real-

world emissions is caused by cold temperatures, road grade, a similar share of types of route, drivers’ dynamic driving

conditions, the uncertainty of PEMS, and RDE analysis tools. Driving uphill greatly increases CO 2, FC, and NO X

emissions due to higher energy demand on roads with an inclination. Operations in cold temperatures increase CO, PN,

and CO 2 emissions compared with warm operation due to a richer air-fuel mixture in cold conditions and the catalytic

convertor not reaching an effective operating temperature; however, NO X emissions showed a decreasing trend during

cold operation. A more dynamic character than the RDE boundaries resulted in an increase in CO2, NOX, and PN

emissions, long-distance driving on a motorway decreased NO X and PN emissions, and shorter trips on urban routes

resulted in higher CO and HC emissions than EU RDE.
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