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Alzheimer’s disease (AD) is the most common cause of dementia and the sixth cause of death in the world, constituting a

major health problem for aging societies. This disease is a neurodegenerative continuum with well-established pathology

hallmarks, namely the deposition of amyloid-β (Aβ) peptides in extracellular plaques and intracellular

hyperphosphorylated forms of the microtubule associated protein tau forming neurofibrillary tangles (NFTs), accompanied

by neuronal and synaptic loss. Interestingly, patients who will eventually develop AD manifest brain pathology decades

before clinical symptoms appear. Among all the proposed pathogenic mechanisms to understand the etiology of

Alzheimer’s disease (AD), increased oxidative stress seems to be a robust and early disease feature where many of those

hypotheses converge. 
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1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia and the sixth cause of death in the world, constituting a

major health problem for aging societies . This disease is a neurodegenerative continuum with well-established

pathology hallmarks, namely the deposition of amyloid-β (Aβ) peptides in extracellular plaques and intracellular

hyperphosphorylated forms of the microtubule associated protein tau forming neurofibrillary tangles (NFTs), accompanied

by neuronal and synaptic loss . Interestingly, patients who will eventually develop AD manifest brain pathology decades

before clinical symptoms appear . Nevertheless, AD is still frequently diagnosed when symptoms are highly disabling

and yet there is no satisfactory treatment.

Although the manifestations of AD are preponderantly cerebral, cumulative evidence shows that AD is a systemic disorder

. Accordingly, molecular changes associated with AD are not exclusively manifested in the brain but include cells from

different parts of the body, ranging from the blood and skin to peripheral olfactory cells. More recently, neurons derived

from induced pluripotent stem cells (iPSCs) from AD patients have contributed to glean a more realistic insight of brain

pathogenic mechanisms . Alternatively, the culture of olfactory neuronal precursors (ONPs) has emerged as a relatively

simpler tool to study different brain disorders, taking advantage of their neuronal lineage and their readily non-invasive

isolation . For instance, patient-derived ONPs manifest abnormal amyloid components together with tau

hyperphosphorylation, which have recently led to the proposal of these cells as a novel diagnostic tool for AD .

Different hypotheses have attempted to explain AD pathogenesis. Some of them include Aβ cascade, tau

hyperphosphorylation, mitochondrial damage, endoplasmic reticulum (ER) stress, and oxidative stress. Interestingly,

although it has been difficult to establish a prevailing causative mechanism, increased levels of oxidative stress seem to

be a common feature for many of these models. Furthermore, oxidative stress due to increased levels of reactive oxygen

species (ROS) has been broadly recognized as a very early signature during the course of AD . Interestingly, AD-

related oxidative stress is by no means restricted to neuronal cells but is also related to astrocytes’ oxidative damage and

antioxidant capacity . Indeed, since the acknowledgment of the tripartite synapse, it has become increasingly clear that

different antioxidant mechanisms of astrocytes can be harnessed by synaptically active neurons and surrounding cells 

. In the tripartite synapse, the astrocyte’s endfeet are close to synapses and can be activated by the spillover of

synaptic glutamate to provide a timely antioxidant response . Moreover, it is not entirely understood how other glial

cells such as pericytes may contribute to the damage induced by AD-related oxidative stress. For instance, oxidative

damage may compromise the integrity of pericytes, which in turn could alter the blood-brain barrier’s integrity, favoring the

infiltration of cytotoxic cells and the emergence of brain edema . In coherence with a broader systemic manifestation

of this disease, the peripheral olfactory system shows AD-associated oxidative stress, which has been measured both in

the olfactory neuroepithelium and in cultured ONPs . However, while the intriguing relationship between oxidative

stress and AD has been long known, their translational impact has remained limited.
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2. Olfactory Neuroepithelium and the Non-Invasive Isolation of ONPs

The olfactory neuroepithelium is a key structure for odor sensing. It consists of a pseudostratified columnar epithelium

located on the outer domain of the olfactory mucosa settled on the basement membrane (BM) and the lamina propria (LP)

. The cellular composition of these layers has been widely documented based on morphological analysis and the use of

characteristic markers for each cell type . Figure 1 schematizes the location, cellular components, and

molecular markers of the human olfactory mucosa.

Figure 1. Cytoarchitecture and cellular components of the human olfactory mucosa. Lamina propria components.

Olfactory Ensheathing Cells, Bowman’s gland and Olfactory Ectomesenchymal Stem Cells (OE-MSCs). The image

indicates the OE-MSCs markers: CD29, CD90, CD44, Nestin, and Vimentin. Olfactory epithelium components. Basal

Cells, Olfactory sensory neurons (OSNs) or Olfactory receptor neurons (ORNs), Sustentacular cells, and Microvillar cells.

The figure shows basal cell markers: K5 (Keratin 5), K17 (Keratin 17), p63, Sox-2 (SRY-Box Transcription Factor 2),

Nestin, BrdU (Bromodeoxyuridine), and Ki-67; ORNs markers: GAP-43 (Growth Associated Protein 43), β-tubulin, OMP

(Olfactory Marker Protein), GNG8 (Guanine Nucleotide-binding protein subunit Gamma), and GNG13 (Guanine

Nucleotide-binding protein G(I)/G(S)/G(O) subunit Gamma-13)); sustentacular cell markers (SUS-1, Cbr2 (Carbonyl

Reductase 2) and Cyp2g1 (Cytochrome P450, family 2, subfamily G, polypeptide 1)) and, microvillar cell marker: (spot-35

proteins). Created with BioRender.com.

The olfactory neuroepithelium is also a source of stem cells, which are capable of self-renewal and can generate neuronal

precursors throughout the entire human lifetime. These precursors include neural stem cells known as basal cells. As

expected for neural stem cells, basal cells are multipotent and allow the continuous replacement of neuronal and non-

neuronal cells such as olfactory receptor neurons (ORNs) and sustentacular cells (of astrocytic lineage), respectively 

. In addition, the LP contains another less accessible population of stem cells, whose features meet most of the

minimum criteria of the mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy

. As such, they are named as olfactory ectomesenchymal stem cells (OE-MSCs) .

Isolation of cells of the olfactory neuroepithelium from patients provides a source of cultured neural stem cells, which has

been used to model different brain disorders such as schizophrenia, Parkinson’s disease, autism, ataxia-telangiectasia,

hereditary spastic paraplegia (HSP), and AD . These neural stem cells can be frozen and stored for

subsequent use and tolerate several passages without significantly losing their main properties. Furthermore, purified

cultures obtained by cloning selection through limiting dilution significantly increases cell viability at least until passage 60

. In this work, we will refer to neural stem cells isolated from the olfactory neuroepithelium as olfactory neuronal

precursors (ONPs), similar to .

Different strategies have been used to isolate and culture patient-derived ONPs, ranging from biopsies to non-invasive

exfoliation of the nasal turbinate. Human ONPs were first isolated by Wolozin et al. from the olfactory neuroepithelium of

cadavers or from adult biopsied samples . Another similar isolation approach demonstrated that a significant

subpopulation of these cells express markers of mature olfactory neurons such as OMP, Golf, NCAM, and NST and look

small and bright to the microscope, in contrast to the remaining “dark phase” cells that do not express OMP, but glial

markers . However, a systematic characterization of these cultures has shown that after a few days in vitro, both dark

and bright phase cells show an intracellular calcium increase in response to odorants, highlighting the neuronal features

of these cells . In addition, cells with features of ONPs have also been obtained from dissociated neurospheres, which

have been denominated “olfactory neurosphere-derived” (ONS) cells . Alternatively, ONPs can be non-invasively
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isolated by an exfoliation of the nasal cavity . These exfoliated cells can be cultured in a modified media to propitiate

neural lineage maintenance and proliferation. Notably, these neuronal precursors conserve their capability to differentiate

into ORNs in the presence of dibutyryl adenosine 3’,5’-cyclic monophosphate (Db-cAMP) and, strikingly, maintain their

electrical response to odorants . Thus, non-invasively isolated ONPs retain neuronal features similar to those obtained

by biopsy. A simplified extraction protocol and the molecular characterization of non-invasively isolated ONPs is shown in

Figure 2.

Figure 2. Non-invasive isolation of olfactory neuronal precursors (ONPs). (A) Schematic cartoon of the isolation protocol

based on the extraction of nasal exfoliate with the subsequent adherent culture and enrichment of ONPs. (B) Left, the

nasal exfoliate is directly seeded on adherent plates, showing a mixture of cell morphologies. Right, after 1–2 weeks

ONPs dividing colonies are easily observed with their characteristic morphologies. (C) Upper panel, immunofluorescence

of cultured ONPs, depicting the stem cell marker Nestin and Ki67 (yellow arrows) to show active cell proliferation. Lower

panel, cultured ONPs express neuronal markers such as β3 tubulin. Cell nuclei are shown by DAPI staining. All scale bars

= 100 μm. All images were generated in our lab. Created with BioRender.com.

3. Alzheimer’s Disease-Related Oxidative Stress in the Olfactory
Epithelium and ONPs

Oxidative stress is the result of an imbalance between oxidant and antioxidant cellular pathways. One of the most studied

oxidant compounds are ROS, which are highly reactive molecules, including peroxide (H O ), superoxide anion radical

(O  • −), and hydroxyl radical (• OH), among others. These molecules may covalently interact with lipids, proteins, and

carbohydrates, generating molecular adducts and cumulative damage that, when sensed by cells, may actively trigger

different death programs .

It was well established almost three decades ago that oxidative stress damage is linked to AD . Furthermore, it has

been proposed that oxidative stress at different brain neuronal and non-neuronal cells might be the earliest event of a

pathogenic cascade . Whether oxidative stress is a causative agent or just a consequence in neurodegenerative

disorders has been thoroughly debated for several years, but still remains an open question . The most

parsimonious interpretation of this evidence is that oxidative stress as well as other potential AD causative agents (such

as Aβ accumulation) are part of a highly interconnected vicious cycle rather than a linear chain of events with a unique

origin. The molecular mechanisms and implications of oxidative stress on the nervous system and, potentially, during AD

pathogenesis have been thoroughly reviewed elsewhere . Here, we focus on evidence showing AD-associated

oxidative stress in the peripheral olfactory system rather than reviewing mechanistic explanations.

Oxidative stress associated with AD is manifested in the olfactory neuroepithelium. Accordingly, increased

immunoreactivity of the antioxidant enzyme manganese and Copper-Zinc superoxide dismutases have been detected in

ORNs and basal and sustentacular cells of the olfactory neuroepithelium of AD patients compared with age-matched

controls . Analogously, AD patients harbor a higher immunoreactivity against the antioxidant protein Metallothionein

both in the olfactory neuroepithelium and the Bowman’s Glands and the LP . Both results suggest that cells from

olfactory neuroepithelium elicit an increased antioxidant defense, due to increased oxidative stress during AD. With

respect to the direct measurement of oxidation products, post-mortem staining showed an increase in 3-nitrotyrosine (3-
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NT) in the brain and olfactory neuroepithelium of AD patients . Figure 3 schematizes the antioxidant response and

oxidative damage reported in ONPs and OE from AD patients. It would be of interest to uncover whether some AD genetic

factors such as the ApoE ε4 allele (ApoE4) (the single most important genetic risk factor for AD) also manifests oxidative

stress signatures in the olfactory epithelium. It is plausible that this is the case because deficits in odor fluency,

identification, recognition memory, and odor threshold sensitivity have been associated with the inheritance of the ApoE4
genotype in several studies . For a more thorough compiling of evidence showing AD-associated oxidative

damage across other domains of the nervous system, readers may refer to the following excellent articles .

Figure 3. Oxidative stress associated with AD in the olfactory neuroepithelium. (a) ONPs and sustentacular cells in the

olfactory epithelium (OE) show an increased antioxidant defense with elevated levels of manganese and copper-zinc

superoxide dismutases as well as heme oxygenase-1 due to increased oxidative stress in AD patients compared with

age-matched controls. Moreover, there is an increase in 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (lipid peroxidation

indicator) levels, suggesting AD-associated oxidative damage. (b) The increased generation of superoxide anion activates

superoxide dismutases (SOD) as an antioxidant response. The generation of other reactive oxygen species (ROS), such

as H O , induces the expression of other antioxidant enzymes (heme oxygenase-1). On the other hand, the accumulation

of superoxide anion increases the levels of compounds such as 4-hydroxynonenal (4-HNE). Moreover, the increased

levels of 3-NT are produced from the interaction of superoxide anion and nitric oxide (NO), whose probable source is

located at activated macrophages in the OE of AD patients. Created with BioRender.com.

The relationship between oxidative stress and AD has been extensively studied mainly through cellular and animal models

. However, these models may not fully capture key features of the disease. This limitation potentially leads to wrong

conclusions about the pathogenic mechanisms and ultimately may dampen the development of effective therapies.

Alternatively, patient-derived cells of neuronal lineage such as those from the olfactory epithelium may provide a

convenient solution to this problem .

Interestingly, cultured patient-derived ONPs and other peripheral cells also manifest AD-associated oxidative stress. For

example, an increase in the level of hydroxynonenal and Nɛ-(carboxymethyl)lysine) (indicating lipid peroxidation), as well

as a higher content of heme oxygenase-1, has been found in ONPs isolated from AD patients compared with age-

matched controls (Figure 3) . Furthermore, ONPs from AD patients are also more susceptible to oxidative stress-

induced cell death . This is strikingly similar to what has been found by our group in blood-derived lymphocytes from

AD patients . Indeed, manifestations of oxidative stress associated with AD have been reported in different patient-

derived peripheral cells ranging from blood cells to fibroblasts and iPSCs-derived neurons. These changes may include

compensatory antioxidant responses and a rise in the concentration of oxidation by-products, as well as increased

susceptibility to ROS-induced cell death, which has been demonstrated in different cellular types from AD patients. Many

of those findings are summarized in the Table 1. In addition, Table 1 also summarizes similar evidence of other relevant

pathogenic mechanisms proposed for AD pathogenesis, including Amyloid/Tau, mitochondria, and ER-stress. Thus,

different cells throughout the body show signs of different proposed AD pathogenic mechanisms, including oxidative

stress at early stages of the disease continuum. The robustness of this tendency highlights the potential of patient-derived

cells, and in particular ONPs, for monitoring oxidative stress associated with AD.

Table 1. Signatures of oxidative stress and other AD mechanistic hypotheses are manifested in patient-derived peripheral

cells, iPSCs and ONPs.
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Pathogenic
Mechanism Main Finding Cellular Type Lineage References

Amyloid/Tau

Platelets from AD patients
reproduce the increased

amyloidogenic processing of
AβPP

Platelets Non-
neuronal

Amyloid/Tau
AD platelets harbor increased
levels of a higher molecular

weight tau isoform
Platelets Non-

neuronal

Amyloid/Tau
Alteration of AβPP, BACE, and
ADAM 10 levels in early stages

of the disease
Platelets Non-

neuronal

Amyloid/Tau

It is suggested a decreased non-
amyloidogenic processing of
AβPP by a lack of nicastrin

mRNA expression in samples
obtained from AD patients

Lymphocytes Non-
neuronal

Amyloid/Tau

Altered balance between Aβ-
oligomers and PKCε levels in
AD. Loss of PKCε-mediated

inhibition
of Aβ

Fibroblasts Non-
neuronal

Amyloid/Tau Higher Aβ /Aβ  ratio compared
to control cells

PSEN1 iPSC-derived
neural progenitors Neuronal

Amyloid/Tau

Mutation alters the initial
cleavage site of γ-secretase,

resulting in an increased
generation of Aβ , in addition to
an increase in the levels of total

and phosphorylated tau

Neuron-derived iPSCs from patients harboring
the London FAD AβPP

mutation V717I
Neuronal

Amyloid/Tau
Oligomeric forms of canonical

Aβ impairs
synaptic plasticity

Cortical neurons from three genetic forms of
AD —PSEN1 L113_I114insT, AβPP duplication
(AβPPDp), and Ts21— generated from iPSCs

Neuronal

Amyloid/Tau

Increase in the content and
changes in the subcellular

distribution of t-tau and p-tau in
cells from AD patients compared

to controls

Non-invasively isolated ONPs Neuronal

Mitochondria
Compromise of mitochondrial

COX from
AD patients

Platelets Non-
neuronal

Mitochondria
Platelets isolated from AD

patients show decreased ATP
levels

Platelets Non-
neuronal

Mitochondria
AD lymphocytes exhibit

impairment of total OXPHOS
capacity

Lymphocytes Non-
neuronal

Mitochondria

AD skin fibroblasts show
increased production of CO  and

reduced oxygen uptake
suggesting that mitochondrial
electron transport chain might

be compromised

Fibroblasts Non-
neuronal

Mitochondria

AD fibroblasts present reduction
in mitochondrial length and a
dysfunctional mitochondrial

bioenergetics profile

Fibroblasts Non-
neuronal

Mitochondria
SAD fibroblasts exhibit aged

mitochondria, and their recycling
process is impaired

Fibroblasts Non-
neuronal

Mitochondria

Patient-derived cells show
increased levels of oxidative

phosphorylation chain
complexes

Human induced pluripotent stem cell-derived
neuronal cells (iN cells) from

SAD patients
Neuronal
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Pathogenic
Mechanism Main Finding Cellular Type Lineage References

Mitochondria
Mitophagy failure as a

consequence of
lysosomal dysfunction

iPSC-derived neurons from FAD1 patients
harboring PSEN1 A246E mutation Neuronal

Mitochondria
Neurons exhibit defective

mitochondrial
axonal transport

iPSC-derived neurons from an AD patient
carrying AβPP -V715M mutation Neuronal

Oxidative
Stress

Increased activity of the
antioxidant enzyme catalase in

probable AD patients
Erythrocytes Non-

neuronal

Oxidative
Stress

Increased production and
content of thiobarbituric acid-
reactive substances (TBARS),
superoxide dismutase (SOD),

and nitric oxide
synthase (NOS)

Erythrocytes and Platelets Non-
neuronal

Oxidative
Stress

Increase in the content of the
unfolded version of p53 as well

as reduced SOD activity
Peripheral blood mononuclear cells (PBMCs) Non-

neuronal

Oxidative
Stress

Exacerbated response to NFKB
pathway PBMCs Non-

neuronal

Oxidative
Stress

Increased ROS production in
response to H O PBMCs Non-

neuronal

Oxidative
Stress

AD lymphocytes were more
prone to cell death after a

H O  challenge
Lymphocytes Non-

neuronal

Oxidative
Stress

Reduced antioxidant capacity of
FAD lymphocytes and

fibroblasts together with
increased lipid peroxidation on

their plasma membrane

Lymphocytes and Fibroblasts Non-
neuronal

Oxidative
Stress

Aβ peptides were better
internalized and generated

greater oxidative damage in FAD
fibroblasts

Fibroblasts Non-
neuronal

Oxidative
Stress

Aβ peptide caused a higher
increase in the oxidation of

HSP60
Fibroblasts Non-

neuronal

Oxidative
Stress

Reduction in the levels of
Vimentin in samples from AD

patients
iPSCs-derived neurons from AD patient Neuronal

Oxidative
Stress

Increased levels of
hydroxynonenal, Nɛ-

(carboxymethyl)lysine), and
heme oxygenase-1 in samples

from AD patients

Biopsy-derived ONPs Neuronal

Oxidative
Stress

Increased susceptibility to
oxidative-stress-induced cell

death
Biopsy-derived ONPs Neuronal

ER-Stress
Impaired ER Ca  and ER stress
in PBMCs from MCIs and mild

AD patients
PBMCs Non-

neuronal

ER-Stress Accumulation of Aβ oligomers
induced ER and oxidative stress

iPSC-derived neural cells from a patient
carrying APP-E693Δ mutation and a sporadic

AD patient
Neuronal

ER-Stress

Aβ-S8C dimer triggers an ER
stress response more prominent

in AD neuronal cultures where
several genes from the UPR

were upregulated

iPSC-derived neuronal cultures carrying the
AD-associated TREM2 R47H variant Neuronal
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Pathogenic
Mechanism Main Finding Cellular Type Lineage References

ER-Stress

Accumulation of Aβ oligomers in
iPSC-derived neurons from AD

patients leads to increased
ER stress

iPSC-derived neurons from patients with
an AβPP-E693Δ mutation Neuronal
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