β-Thalassemia Heterozygotes

Subjects: Obstetrics & Gynaecology Contributor: Sotirios Sotiriou

β-Thalassemia is the most prevalent single gene blood disorder, while the assessment of its susceptibility to coronavirus disease 2019 (COVID-19) warrants it a pressing biomedical priority.

Keywords:
ß-thalassemia; risk; coronavirus

1. Introduction

Identifying medical conditions with a high or potentially deadly impact on the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a critical initial step towards containment of associated morbidity and mortality risks. Given that viral stress from SARS-CoV-2 elicits anabolic responses supported by increasing blood pressure to meet enhanced oxygen needs of vital organs and organ systems, hypoxemia is rendered a high-risk medical condition ^{[1][2]}. As the most common blood disorder affecting approximately one third of the global population, anemia presents a low tolerance to hypoxemia and may have either acquired polysystemic or inherited poly- or monogenic background ^[3]. Monogenic anemia—which is caused by abnormal hemoglobin—is a rather prevalent medical disorder with 270 million carriers worldwide ^{[4][5][6]}. β -Thalassemia is the most common inherited single gene disorder in the world. Approximately one-third of all hemoglobinopathies and/or nearly 1.5% of the global population carry the β -thalassemia trait ^[2]. In this context, β -thalassemia heterozygosity is a strong candidate condition for assessing an individual's susceptibility to COVID-19.

2. Associations

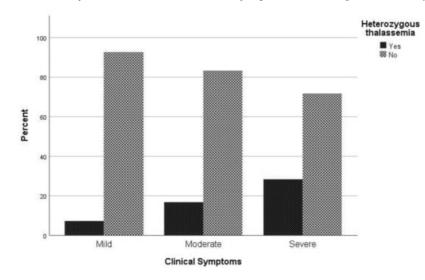
Association of β -thalassemia heterozygosity with severe and critical COVID-19 symptoms.

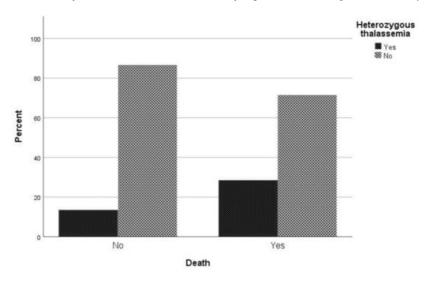
Considering the clinical spectrum of COVID-19 as a primary outcome, patients were categorized into three groups (asymptomatic and mild/ moderate/ severe and critical). No difference in chest X ray or CT scan was observed among study participants. In univariate analysis, sex (p = 0.047), age (p < 0.001), atrial fibrillation (p = 0.022), coronary disease (p = 0.041), hyperlipidemia (p = 0.014), hypertension (p < 0.001), and being heterozygous for thalassemia (p = 0.004) were associated with severe COVID-19 symptoms (**Table 1**). In multivariate analysis, male sex (p = 0.023), increased age (p < 0.001), and being heterozygous for thalassemia (p = 0.002) were identified as independent risk factors for severe and critical clinical COVID-19 symptoms. Specifically, males had a 1.81 times (95% CI, 1.09 to 3.01) increased possibility for severe or critical clinical symptoms; increased age was associated with increased odds of severe and clinical symptoms with OR = 1.06 (95% CI, 1.04 to 1.08). A finding of great interest is that patients who were heterozygous for thalassemia were 2.89 times (95% CI, 1.49 to 5.62) more likely to have severe and critical clinical symptoms of COVID-19 (**Figure 1**).

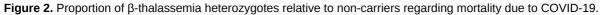
Severity			Univariate	Multivariate Or (Severe and Cr	_	
Mild (%)	Moderate (%)	Severe and Critical (%)	<i>p</i> -Value	p-Value	aOR with 95% CI	_
Sex (M/F)	34/34	67/46	52/22	0.047 *	0.023	1.81 (1.09– 3.01)
Age (median, IQR)	51.5 (34)	64.0 (17)	70.5 (15)	<0.001 ±	<0.001	1.06 (1.04– 1.08)

Severity			Univariate	Multivariate Or (Severe and Cr		
Mild (%)	Moderate (%)	Severe and Critical (%)	p-Value	p-Value	aOR with 95% CI	-
Atrial Fibrillation	17 (25.0)	32 (28.3)	33 (44.6)	0.022 *	0.787	0.92 (0.49– 1.71)
Respiratory Disease	5 (7.4)	13 (11.5)	14 (18.9)	0.104 *	0.325	1.47 (0.68– 3.15)
Coronary Disease	7 (10.3)	23 (20.4)	20 (27.0)	0.041 *	0.955	1.02 (0.50– 2.09)
Diabetes	10 (14.7)	25 (22.1)	18 (24.3)	0.331 *	0.619	0.85 (0.45– 1.60)
Neoplasia	7 (10.3)	11 (9.7)	11 (14.9)	0.529 *	0.209	0.61 (0.28- 1.32)
Hyperlipidemia	21(30.9)	60 (53.1)	32 (43.2)	0.014 *	0.138	0.65 (0.37– 1.15)
Hypertension	24 (35.3)	62 (54.9)	56 (75.7)	<0.001 *	0.104	1.67 (0.90- 3.08)
β-Thalassemia Heterozygotes	5 (7.4)	19 (16.8)	21 (28.4)	0.004 *	0.002	2.89 (1.49- 5.62)

* Chi-square test, ± Mann–Whitney test; Bold is for the statistically significant results (p-value < 0.05).




Figure 1. Proportion of β-thalassemia heterozygotes relative to non-carriers regarding clinical symptoms to COVID-19.


2.1. Association of β-Thalassemia Heterozygotes with Mortality Due to COVID-19

Regarding mortality associated with COVID-19 infection, in univariate analysis sex (p = 0.022), age (p < 0.001), atrial fibrillation (p = 0.002), respiratory disease (p = 0.027), coronary disease (p = 0.027), hypertension (p < 0.001), and being heterozygous for thalassemia (p = 0.005) were associated with mortality (**Table 2**). In logistic regression analysis, male patients had a 2.09 times (95% CI, 1.05 to 4.18) greater possibility of dying and patients with increased age were 1.06 times (95% CI, 1.03 to 1.09) more likely to die. It is worth noting that hyperlipidemia plays a beneficial role in COVID-19 mortality, as the odds ratio of mortality in patients with hyperlipidemia is 0.65 (95% CI 0.37–1.15). It should be highlighted that patient who are heterozygous for thalassemia have a 2.79 times (95% CI, 1.28 to 6.09) greater possibility of dying than other patients (**Figure 2**).

Mortality	Univariate				MultivariateBinary Logistic Regression		
Yes (%)	No (%)	p-Value	OR with 95% CI	RR with 95% Cl	<i>p</i> -Value	aOR with 95% Cl	-
Sex (M/F)	50/20	103/82	0.022 *	1.99 (1.10– 3.61)	1.67 (1.06– 2.64)	0.036	2.09 (1.05- 4.18)
Age (median, IQR)	72.5 (15)	61.0 (24)	<0.001 ±	-	-	<0.001	1.06 (1.03- 1.09)
Atrial Fibrillation	33 (47.1)	49 (26.5)	0.002 *	2.48 (1.40– 4.39)	1.88 (1.28– 2.78)	0.201	1.64 (0.77- 3.48)
Respiratory Disease	14 (20.0)	18 (9.7)	0.027 *	2.32 (1.08– 4.97)	1.74 (1.11– 2.74)	0.297	1.61 (0.66- 3.95)
Coronary Disease	20 (28.6)	30 (16.2)	0.027 *	2.07 (1.08– 3.96)	1.64 (1.08– 2.49)	0.808	0.90 (0.39- 2.09)
Diabetes	18 (25.7)	35 (18.9)	0.233 *	1.48 (0.77– 2.84)	1.32 (0.85- 2.05)	0.758	0.87 (0.41- 1.91)
Neoplasia	10 (14.3)	19 (10.3)	0.367 *	1.46 (0.64- 3.31)	1.30 (0.75– 2.24)	0.395	0.67 (0.26- 1.70)
Hyperlipidemia	30 (42.9)	83 (44.9)	0.773 *	0.92 (0.53– 1.61)	0.94 (0.63– 1.41)	0.008	0.38 (0.19- 0.78)
Hypertension	52 (74.3)	90 (48.6)	<0.001 *	3.05 (1.66– 6.60)	2.30 (1.43– 3.70)	0.198	1.67 (0.77- 3.62)
β-Thalassemia Heterozygotes	20 (28.6)	25 (13.5)	0.005 *	2.56 (1.31– 4.99)	1.87 (1.24– 2.80)	0.010	2.79 (1.28 6.09)

* Chi-square test, ± Mann–Whitney test; Bold is for the statistically significant results (p-value < 0.05).

2.2. Admission of COVID-19 Infected β-Thalassemia Heterozygotes to the ICU

Regarding the requirement for ICU care, it was found through univariate analysis that age (p = 0.03), respiratory disease (p = 0.029) and hypertension (p < 0.001) were associated with ICU admission (**Table 3**). Through logistic regression analysis, patients with hypertension had 5.12 times (95% CI, 2.04 to 12.87) greater risk of requiring ICU care than patients without hypertension. On the contrary, hyperlipidemia was identified as a protective factor against ICU admission, with OR = 0.44 (95% CI, 0.21 to 0.94). Furthermore, in relation to the requirement for ICU care, being heterozygous for thalassemia had no effect on the possibility of admission to the ICU (p = 0.505).

Table 3. Characteristics and ICU admission due to COVID-19.

ICU	Univariate			MultivariateBinary Logistic Regression			
Yes (%)	No (%)	<i>p</i> -Value	OR with 95% Cl	RR with 95% Cl	p-Value	aOR with 95% Cl	
Sex (M/F)	36/17	117/85	0.186 *	1.54 (0.81– 2.92)	1.41 (0.84– 2.37)	0.305	1.45 (0.72– 2.93)
Age (median, IQR)	66.2 (17)	60.4 (24)	0.030 ±	-	-	0.649	1.01 (0.98– 1.04)
Atrial Fibrillation	21 (36.9)	61 (30.2)	0.191*	1.52 (0.81– 2.84)	1.39 (0.85– 2.25)	0.966	0.98 (0.43– 2.23)
Respiratory Disease	11 (20.8)	21 (10.4)	0.043 *	2.26 (1.01– 5.04)	1.83 (1.05– 3.17)	0.205	1.80 (0.73– 4.46)
Coronary Disease	16 (30.2)	34 (16.8)	0.029 *	2.14 (1.07– 4.27)	1.77 (1.08– 2.92)	0.393	1.48 (0.61– 3.59)
Diabetes	10 (18.9)	43 (21.3)	0.699 *	0.86 (0.40– 1.85)	0.87 (0.48– 1.64)	0.098	0.49 (0.21– 1.14)
Neoplasia	4 (7.5)	25 (12.4)	0.466 [†]	0.58 (0.19– 1.74)	0.64 (0.25– 1.63)	0.102	0.37 (0.11– 1.22)
Hyperlipidemia	22 (41.5)	91 (45.0)	0.644 *	0.87 (0.47– 1.60)	0.89 (0.55– 1.45)	0.033	0.44 (0.21– 0.94)
Hypertension	42 (79.2)	100 (49.5)	<0.001 *	3.90 (1.90– 7.99)	3.04 (1.64– 5.63)	0.001	5.12 (2.04– 12.87)
β-Thalassemia Heterozygotes	11 (20.8)	34 (16.8)	0.505 *	1.29 (0.61– 2.77)	1.22 (0.68– 2.18)	0.508	1.33 (0.57– 3.06)

* Chi-square test, ± Mann-Whitney test, † Fisher's exact test; Bold is for the statistically significant results (p-value <

2:35) Length of Hospitalization until Death

When comparing the median length of hospitalization (days) between patients being heterozygous for thalassemia and non-carriers, a statistically significant difference was observed (p = 0.046) (**Figure 3**). More specifically, the median duration of hospitalization among carriers and non-carriers was 12 and 17.5 days, respectively.

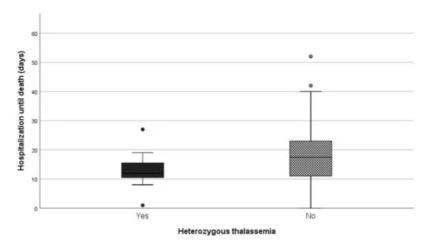


Figure 3. Days of hospitalization until death between carries and non-carriers.

2.4. Length of Hospitalization among Patients Who Survived

Regarding days of hospitalization among patients that survived COVID-19, the median duration was eight days for patients that were heterozygous for thalassemia and six days for non-carriers (p = 0.014) (**Figure 4**).

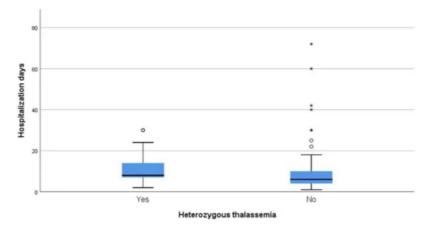


Figure 4. Days of hospitalization between carries and non-carriers that survived.

References

- 1. Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.-C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System. Circ. Res. 2020, 126, 1456–1474.
- 2. Rahman, A.; Tabassum, T.; Araf, Y.; Al Nahid, A.; Ullah, A.; Hosen, M.J. Silent hypoxia in COVID-19: Pathomechanism and possible management strategy. Mol. Biol. Rep. 2021, 48, 3863–3869.
- 3. Lopez, A.; Cacoub, P.; Macdougall, I.C.; Peyrin-Biroulet, L. Iron deficiency anaemia. Lancet 2015, 387, 907–916.
- 4. Samara, M.; Chiotoglou, I.; Kalamaras, A.; Likousi, S.; Chassanidis, C.; Vagena, A.; Vagenas, C.; Eftichiadis, E.; Vamvakopoulos, N.; Patrinos, G.P.; et al. Large-scale population genetic analysis for hemoglobinopathies reveals different mutation spectra in Central Greece compared to the rest of the country. Am. J. Hematol. 2007, 82, 634–636.
- 5. De Sanctis, V. β-thalassemia distribution in the old world: A historical standpoint of an ancient disease. Mediterr. J. Hematol. Infect. Dis. 2016, 9, e2017018.
- 6. Williams, T.N.; Weatherall, D.J. World Distribution, Population Genetics, and Health Burden of the Hemoglobinopathies. Cold Spring Harb. Perspect. Med. 2012, 2, a011692.
- 7. Whetheral, D.J. The thalassemias. In Williams Hematology, 5th ed.; Beutler, E., Lichtman, M.A., Coller, B.S., Kipps, T.J., Eds.; McGraw-Hill: New York, NY, USA, 1995.

Retrieved from https://encyclopedia.pub/entry/history/show/32358