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 At first, enteric glial cells were considered to be just a structural support for neurons, but recent findings

emphasized more on their functions, and they turned out to be equally as important as neural cells, due to their

involvement in all aspects of neural functions for both the central and peripheral nervous system, including the

ENS.They have been mostly underestimated, particularly regarding the modulation of their functions by

nutraceuticals.

coffee  enteric glial cells  glia  inflammatory bowel disease  irritable bowel syndrome

neuropathic pain  nutraceuticals  quercetin  resveratrol

1. Introduction

The enteric nervous system (ENS) is a complex network of neurons and accompanying glial cells (enteric glial

cells, EGCs) which controls the major functions of the gastrointestinal (GI) tract.

At first, glia were considered to be just a structural support for neurons, but recent findings emphasized more on

their functions, and they turned out to be equally as important as neural cells, due to their involvement in all

aspects of neural functions for both the central and peripheral nervous system, including the ENS.

Among the different types of glial cells (for example, astrocytes, microglia, Schwann cells), EGCs have been

mostly underestimated, particularly regarding the modulation of their functions by nutraceuticals. However, EGCs

are more often being recognized for their essential roles in physiology and the disease .

In this review, we focus on the enteric glia, their role and functions in physiology and pathology as well as the

available studies on the effects of different nutraceuticals as modulators of these interesting cells.

2. Enteric Glial Cells

The ENS is a network of neurons divided into submucosal and myenteric plexuses, together with their

accompanying glia, the EGCs . Originally, EGCs were considered as a structural support for the enteric neurons,

however recently, it was proved that they are crucial for the functioning of the GI tract under physiological (intestinal

barrier support, GI motility, sensation) and pathophysiological conditions (GI motility disturbances, visceral pain).

Hanani et al. distinguished and classified EGCs into four subgroups based on their morphology (Table 1) 
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Table 1. Division of the enteric glial cells into subtypes.

Abbreviations: EGC, enteric glial cell. Created in biorender.com (accessed on 15 March 2021).

Besides morphology, EGCs may also be classified according to the molecular or functional differences in receptors

or channels expressed on their surface or in their nuclei. The following proteins are currently used to identify EGCs,

i.e., calcium-binding protein S100β , glial fibrillary acidic protein (GFAP)  and the transcription factors: SOX8,

SOX9, SOX10 .

As shown in  Table 2, EGCs share some similarities with astrocytes, the major type of glial cells of the central

nervous system.

Table 2. Comparison between enteric glial cells and astrocytes .

Type Morphology Location

Type I
Protoplasmic

EGCs

Star-shaped cells with short,
irregularly branched processes

Intraganglionic (enteric ganglia)

Type II
Fibrous EGCs

Elongated glia with branches Within interganglionic fiber tracts

Type III
Mucosal EGCs

Long branched processes Extraganglionic: subepithelial glia

Type IV
Intermuscular

EGCs
Elongated glia

Extraganglionic: accompanying the nerve
fibers and encircling the smooth muscles
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Feature Enteric Glial Cells Astrocytes

Morphology
Irregularly branched

processes

In vivo: numerous processes forming well-delineated
bushy territories

In culture: few processes, polygonal fibroblast-like shape
Astrocytes show structural plasticity: their morphology
differs between brain areas, and it may be changed

(stellation or process growth) by different stimuli

Subtypes

Protoplasmic
Fibrous
Mucosal

Intermuscular

Protoplasmic
Fibrous

Location
Enteric nervous system

(submucosal and myenteric
plexus)

Central nervous system
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Abbreviations: BR1, bradykinin receptor 1; CD44, membrane glycoprotein; EGF, epidermal growth factor; ET-B,

entothelin-1 receptor B; GFAP, glial fibrillary acidic protein; GI, gastrointestinal; IL, interleukin; Ran-2, rat neural

antigen-2; TLR-4, Toll-like receptor 4; TGF-β, transforming growth factor β; TNF-α, tumor necrosis factor α; TrkA,

nerve growth factor receptor.

2.1. Cellular and Tissular Roles of EGCs

Generally, EGCs are considered as non-excitable cells, as they are unable to generate an action potential.

Furthermore, EGCs are interconnected and electrically coupled by gap junctions that form an extensive glial

network , as shown in Figure 1.

Figure 1. Appearance of enteric glial cells (EGCs). (A,B) Show the images obtained from the myenteric plexus of

the rat distal colon; immunoreactivity to S100-β (A) and glial fibrillary acidic protein (GFAP) (B) are characteristic

for EGCs. (C) Shows the network of electrically-coupled EGCs (arrows) in one myenteric ganglion from the guinea

pig ileum; this image was taken as the result of the accidental insertion of an electrode filled with neurobiotin in one

EGC while performing electrophysiological recordings of the activity of myenteric neurons (*); neurobiotin injected

Feature Enteric Glial Cells Astrocytes

Identification

GFAP
Calcium-binding protein S100β

Transcription factors (SOX8,
SOX9, SOX10)

GFAP
Calcium-binding protein S100β

Glutamine synthase
CD44

Vimentin
Ran-2

Astrocytes from different brain regions can exhibit
pronounced molecular differences

Adjacent cell
coupling

Gap junction coupling Gap junction coupling

Activation

Release of pro-inflammatory
cytokines (i.e., IL-1β, TNF-α)

Increased expression of c-fos,
TrkA, ET-B, TLR-4, BR1

Enhanced expression of glial
cell markers

Release of pro-inflammatory cytokines (i.e., IL-1β, IL-6,
TNF-α, TGF-β)

Increased expression of adhesion-related molecules
(CD44)

Increased expression of receptors for EGF, TNF-α
Enhanced expression of glial cell markers: GFAP,

vimentin, nestin

Involved in
Physiopathological modulation

of GI functions

Development and plasticity of dendritic spines and
synapses

Elimination of dendritic spines,
synapse formation

Regulation of neurotransmission and plasticity

[9]



Enteric Glial Cells | Encyclopedia.pub

https://encyclopedia.pub/entry/15787 4/18

into one EGC diffused throughout the gap junctions connecting it with the other EGC in the myenteric ganglion, in

the same way as firstly described by Hanani et al.  in 1989 for Lucifer yellow dye.

Enteric glial cells communicate with surrounding cells (neurons, glia, epithelial cells, immune cells) and integrate

received information through calcium signaling . Intercellular communication is a result of the propagation of

calcium waves through connexin 43 (Cx43) hemichannels . Moreover, EGCs are susceptible to the activation by

neural pathways: intrinsic (from enteric neurons) or extrinsic (from autonomic or primary afferent neurons). The

major neurotransmitter involved in this extracellular signaling is adenosine triphosphate (ATP) . It was found that

intermuscular EGCs express the purinergic receptor (P2X7) .

Like neurons, EGCs may release neurotransmitters and express the receptors for neurotransmitters on their

surface to receive signals  . In particular, human EGCs were found to be immunoreactive to glutamate

 and gamma amino butyric acid (GABA) transporter (GAT2) . Furthermore, EGCs exhibit immuno-reactivity

for L-arginine, a nitric oxide (NO) precursor and thus they may be involved in nitrergic neurotransmission .

Interestingly, EGCs are characterized by displaying a remarkable function: they may be activated upon stimulation

(e.g., inflammation or following the injury), and switched into a reactive, pro-inflammatory phenotype . When

EGCs are activated, they have an increased ability to proliferate , enhance c-fos expression, and change their

expression of markers and surface receptors . For example, the expression of nerve growth factor (NGF)

receptor, tropomyosin receptor kinase A (TrkA) , endothelin-1 receptor B (ET-B) , Toll-like receptor (TLR) 4

, and bradykinin receptor 1 (BR1)  are increased in enteric glia incubated with interleukin-1β (IL-1β), and TrkA

receptor is up-regulated in response to lipopolysaccharide (LPS) stimulation .

Consequently, reactive glial cells are characterized by an increased expression of enteric glial markers. For

instance, the expression of GFAP may be induced by the incubation with tumor necrosis factor α (TNF-α), IL-1β,

LPS or LPS + interferon γ (IFN-γ) . The latter also increases the expression of S100β . In vivo, increased

GFAP expression in the rat myenteric plexus occurred in LPS-induced intestinal inflammation .

Moreover, reactive EGCs are able to release neurotrophins, growth factors or cytokines and therefore enteric glia

recruit immune cells (macrophages, neutrophils, mast cells) into the colonic mucosa . This confirms an

important immunomodulatory role for these cells within the GI tract.

The EGCs that are located directly underneath the epithelial layer constitute a link between the epithelium and

submucosal neurons, and they participate in all steps of epithelial regeneration (cellular differentiation, migration,

adhesion and proliferation) . Therefore, EGCs support the epithelial barrier integrity in the intestines and have the

capacity to enhance epithelial healing. Glial cell derived neurotrophic factor (GDNF) released by EGCs entails anti-

inflammatory effect in the intestines through the inhibition of cellular apoptosis and decrease of pro-inflammatory

cytokine level . Furthermore, during mild inflammation, GDNF helps in the processes of epithelial

reconstitution and maturation . In addition, EGCs produce and release several factors involved in the processes

of epithelial regeneration: pro-epithelial growth factor (pro-EGF)  S-nitrosoglutathione  or 15-deoxy-Δ12,14-
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prostaglandin J2 (15d-PGJ2) . EGCs support the intestinal barrier through decreasing intestinal permeability

or increasing the resistance to infections .

Enteric glial cells are also involved in the control of GI motility, as they coordinate sensory and motor signaling

within the GI tract . Noteworthily, according to Aubé et al. , a progressive loss of EGCs in transgenic mice,

expressing haemagglutinin (HA), that received activated HA specific CD8+ T cells, led to the prolongation of the GI

transit. In the study by Nesser et al. , in mice treated with fluorocitrate, a selective gliotoxin, the upper GI transit

time was prolonged and the intestinal motility patterns were impaired (both the basal tone and the amplitude of

contractility in response to electrical field stimulation were decreased).

Finally, ECGs are considered to be involved in visceral sensation, via directly or indirectly sensitizing or activating

nociceptors. Additionally, EGCs have the potential to regulate nociceptor sensitization/activation by removing of

neuromodulators . Direct mechanisms of sensitization include the release of neuromodulators such as ATP,

GABA, IL-1β and neurotrophins. Indirect mechanisms involve antigen presentation through major histocompatibility

complex (MHC) class I and II, leading to activation of T cells followed by cytokine release, and regulation of other

immune cells, leading to release of histamine and further cytokines (TNF-α, IL-1β) . Moreover, pro-inflammatory

signals induce glial Cx43-dependent macrophage colony-stimulating factor (M-CSF) production through protein

kinase C (PKC) and TNF-α converting enzyme (TACE). This further supports the importance of EGC interaction

with macrophages in the regulation of visceral hypersensitivity during chronic inflammation .

2.2. Physiological Changes in the Population of EGCs

The population of EGCs may be altered by many physiological factors, such as aging or diet modifications. The

process of aging of the GI tract includes a progressive loss of EGCs. Philips et al. compared the population of

EGCs in the GI tract in young (5–6 months-old) and old (26-month-old) rats. According to their findings, there was a

significant decline in the number and density of EGCs in the myenteric plexus from the duodenum up to the distal

colon with age. However, there was a small, non-significant decrease of EGC number in the rectum.

Interestingly, more detailed research revealed that diet also influences the population of EGCs. A high-fat diet

caused a significant loss of EGC density in duodenal submucosal plexus in mice . On the contrary, the same

diet increased the number of EGCs in the myenteric plexus of the antrum, while it remained unchanged in the

jejunum . In contrast to the alterations in the enteric glia, high-fat diet led to a substantial loss of myenteric

neurons, while the population of submucosal neurons stayed within the norm .

On the other hand, food restrictions that slow the aging process by reducing the oxidative processes thus inhibiting

of cell death, turned out to be detrimental for the EGCs. According to the study by Schoffen et al. , diet restriction

accentuated morphologic and quantitative changes in glial cell populations in rats, whereas the 50% reduction of

food supply entailed neuroprotective effects on the myenteric neurons in the colon.

Nevertheless, the mechanisms responsible for the gliopathy occurring with age or diet modifications remain

unknown. It is yet to be clarified whether the changes in morphology or number of EGCs are due to a direct impact
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of aging/diet restrictions or rather a consequence of the concomitant degenerative processes of the neurons in the

ENS.

3. Role of EGCs in GI Pathophysiology

As EGCs coordinate the communication between the cells in the GI tract (neurons, epithelial cells, myocytes), any

alterations in their population (such as those associated with the occurrence of different diseases) may have a

significant impact on the GI functions.

3.1. Intestinal Inflammation

Inflammatory bowel disease (IBD) is a group of chronic inflammatory conditions of the GI tract and two major types,

Crohn’s disease (CD) and ulcerative colitis (UC) are distinguished. The first reports regarding the importance of

enteric glia in the inflammatory processes in the GI tract came from 1998. Bush et al. [54] generated transgenic

mice through the ablation of GFAP-positive glial cells from the jejunum and ileum, resulting in fulminating and fatal

jejuno-ileitis. The ablation of EGCs led to severe inflammations, causing degeneration of neurons in the ENS and

hemorrhagic necrosis of the small intestine. The alterations within the gut were similar to the pathology in the

course of IBD in both animals and humans . Consequently, the concept about the involvement of EGCs in the

inflammatory processes in the GI tact emerges.

Noteworthily, Pochard et al. summed up the results of molecular studies on the population of EGCs in IBD: in

most studies, the expression of GFAP, S100β and GDNF was elevated in inflamed colon of IBD patients (both CD

and UC) in comparison to their healthy colonic tissue . The expression of GFAP was decreased in healthy

intestinal samples from CD patients , but not UC, comparing to healthy patients. The expression of S100β was

downregulated in the myenteric plexus of uninflamed areas from CD patients in comparison to healthy controls .

Likewise, in the rectum of UC patients the submucosal expression of S100β was decreased in comparison to

healthy controls  . Noteworthily, GDNF production was increased in samples collected from healthy parts of

the colon of UC patients as compared to healthy controls . Interestingly, GDNF ameliorated experimental colitis,

inhibited mucosal inflammatory response and decreased intestinal permeability in the mouse model of colitis

induced by dextran sodium sulfate (DSS) .

The differences in the expression of glial markers in the course of IBD do not reflect the extent of alterations in the

population of EGCs in the intestines during inflammation. The decreased expression of GFAP, located in the

cytoplasm of CD patients may be considered as a sign of glial loss, but GFAP immunohistochemical staining is not

optimal to quantify the number of cells. The emerging approach, that could possibly be used for further assessment

of the enteric glia population in the course of IBD is the utilization of proteins located in the nucleus (such as SOX

8/9/10) .

Besides the potential glial loss in the course of IBD, the functional differences appear to be significant.

Coquenlorge et al.  assessed that, although EGCs isolated from controls and CD patients exhibited similar
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expression of glial markers (GFAP, S100β) and EGC-derived factors (IL-6, TGF-β, pro-EGF and glutathione

(GSH)), they differed in their influence on the intestinal barrier. Enteric glial cells from CD patients failed in

supporting the intestinal barrier and the healing process opposite to those from healthy controls. This study was

further expanded on the UC patients. It assessed how EGCs isolated from UC patients affect epithelial barrier of

the intestines. It was confirmed that, unlike CD patient derived EGCs, EGCs from UC patients preserve intestinal

permeability. The efficiency of the intestinal barrier was similar in co-culture with EGCs derived from UC patients

and healthy controls  .

Under physiological conditions, MHC class I receptors are expressed on the enteric glia, while MHC class II remain

almost undetectable . However, after the exposure to enteroinvasive Escherichia coli, the expression of MHC

class II on the enteroglial cells is increased . Moreover, the expression of MHC class II was significantly

increased in CD patients in comparison to healthy controls, in which the expression of these receptors was very

low or even absent .

3.2. Chronic Constipation

Chronic constipation is a condition characterized by a lack of frequent bowel movements or difficulties of stool

passage. Chronic constipation may be related to the organic barriers in the colon or rectum (i.e., tumor),

neuronal/muscular impairment (i.e., dysmotility in Parkinson’s disease), post-infection (megacolon caused by

Chagas disease) or idiopathic (idiopathic constipation). The results of clinical studies on the importance of EGCs in

the control of GI motility indicate that a loss of enteric glia in the ENS may be associated with dysmotility (i.e.,

idiopathic constipation or infectious-related dysmotility).

According to Bassotti et al. , who examined patients with constipation and collected samples from the ileum and

colon, there was a loss of EGCs in these tissues. Notably, the decrease in the number of EGCs was accompanied

by the reduction of enteric neurons density. Similar results were obtained in a group of patients with severe,

intractable constipation that underwent colectomy with ileorectostomy, as they displayed a significant decrease in

neurons, EGCs and interstitial cells of Cajal. Constipated patients had significantly more apoptotic enteric neurons

in comparison to controls .

Noteworthily, the population of EGCs in the submucosal and myenteric plexus was significantly decreased in the

colon of patients with severe constipation due to obstructed defecation refractory to medical treatment or

biofeedback training. At the same time, the enteric neurons were reduced only in the submucosal plexus .

In the case of megacolon occurring in the course of Chagas disease (an infectious disease caused

by Trypanosoma cruzi) and idiopathic megacolon, there was a remarkable reduction in the number of neurons and

EGCs in the ENS in the colonic specimens collected during surgery. However, the differences in the population of

EGCs were more pronounced in the group of patients with infectious megacolon .

3.3. Postoperative Ileus
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Postoperative ileus (POI) is a condition that may occur after surgery of the abdominal cavity or the outer abdomen,

which is associated with GI motility impairment and results in inhibition of peristalsis and distension. Although the

pathophysiology of POI remains unknown, recent studies indicate that EGCs maintain an important role in this

process. Stoffels et al.  investigated the molecular mechanism of POI in mice. They determined that the

blockage of the receptor for interleukin 1 (IL-1R) attenuated the POI. These receptors were found to be expressed

on the surface of EGCs in the myenteric plexus. The activation of IL-1R in cultured EGCs promoted an

inflammatory response through an increase in IL-6 and monocyte chemotactic protein 1 (MCP-1) levels, which may

be an important step in the development of POI.

3.4. Irritable Bowel Syndrome

Irritable bowel syndrome (IBS) is a chronic disease of the GI tract that manifests with recurrent abdominal pain

accompanied by GI motility disturbances. This functional GI disorder may be classified as diarrhea-predominant

IBS (IBS-D), constipation-predominant (IBS-C) or mixed IBS, when both diarrhea and constipation occur in an

alternate manner (IBS-M).

According to Lilli et al.  the immunoreactivity of S100β was significantly reduced in the colonic biopsies of IBS

patients, independently of the IBS subtype (IBS-C, IBS-D, and IBS-M). Furthermore, the incubation of the rodent

EGCs with supernatants from the mucosal biopsies from IBS-C patients reduced the cellular proliferation.

Noteworthily, exposure of rat enteric glia with IBS-D and IBS-M supernatants impaired ATP-induced Ca  response

of these cells.

In some cases, one more type of IBS can be distinguished: the one followed by the bacterial, viral or parasitic

infection of the GI tract (post-infectious IBS, PI-IBS) . Notably, there were many attempts to elucidate the

molecular mechanism that underlies PI-IBS, for example: hyperplasia of enterochromaffin cells, increased intestinal

permeability or enhanced cytokine production . Importantly, one of the proposed mechanisms of PI-IBS

followed by Clostridium difficile infection involves EGCs. Toxin B produced by C. difficile evokes cytotoxic and pro-

apoptotic effects on EGCs in vitro. This harmful impact of toxin B on enteric glia results from the disorganization of

cytoskeleton, early cell rounding with Rac1 glucosylation, cell cycle inhibition and increased susceptibility to

apoptosis induced by the pro-inflammatory cytokines (TNF-α and IFN-γ). Importantly, despite these direct effects of

toxin B, it is important that EGCs which survive the detrimental action of toxin B, do not recover and their function is

not restored (they exhibit persistent Rac1 glucosylation, disturbances in the cell cycle and low apoptosis rate) .

The long-term effects of C. difficile infection on EGCs network may be pivotal for GI homeostasis, as enteric glia

coordinate cell-to-cell communication in the intestines .

The severity of visceral hypersensitivity in IBS patients may be associated with brain derived neurotrophic factor

(BDNF), a protein described as crucial in the process of neuropathic and inflammatory pain. The level of BDNF

was significantly elevated in the colonic mucosal biopsies from IBS patients and corresponded with the abdominal

pain severity . The high-affinity receptor for BDNF, tropomyosin receptor kinase B (TrkB), is expressed on the

surface of EGCs . Interestingly, the expression of this receptor, along with GFAP and substance P (SP), was
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increased in the colonic mucosa of IBS patients. It suggests that BDNF may play a key role in the occurrence of

visceral hypersensitivity, i.e., in the course of IBS, through the interactions with EGCs. It was determined that the

administration of fecal supernatants from IBS-D patients failed to induce visceral hypersensitivity in BDNF ± mice in

contrast to wild type animals. In wild type animals, the pain threshold to colorectal distension after IBS-D fecal

supernatant administration was significantly elevated when pretreated with a TrkB antagonist (TrkB/Fc).

Noteworthily, the induction of visceral hypersensitivity evoked the up-regulation of the same proteins (TrkB, GFAP,

SP) as in IBS patients in wild type animals, but not in the BDNF ± mice . Overall, the fecal supernatant from IBS

patients induced hypersensitivity that may involve a BDNF-TrkB signaling pathway. Thus, BDNF appear to act as a

link between visceral hypersensitivity and EGC activation.

The first step of the non-pharmacological management of IBS is diet modification. A dietary approach may involve

the consumption of a low FODMAP products (diet low in fermentable carbohydrates). It was assessed that IBS

patients have a higher Firmicutes/Bacterioidetes ratio and bacteria from the phylum Firmicutes are considered as a

major source of the short chain fatty acid butyrate, a small molecule metabolite arising from symbiotic bacteria

fermentation from insoluble dietary fibers . The lower supply of fermentable carbohydrates alleviates IBS

symptoms . Furthermore, the butyrate enemas induce visceral hypersensitivity in animals tested. It was

elucidated that butyrate-induced hypersensitivity is associated with the up-regulation of NGF on messenger

ribonucleic acid (mRNA) and protein level thus EGCs are one of the major sources of NGF in the GI tract.

Noteworthily, NGF was co-expressed with GFAP and the co-localized immunostaining area of NGF and GFAP was

increased in the colon of rats that received butyrate-enema. Furthermore, it was reported that the secretion of NGF

from EGCs in the colonic lamina propria was increased after the butyrate-enema

3.5. EGC and Pathophysiology Outer the GI Tract

Intestinal motility disfunction may also be a characteristic symptom of diseases outer the GI tract, for example

neurodegenerative diseases, such as Parkinson’s disease (PD) or prion diseases. PD is a long-term, multi-system

disease of the CNS, which is related to degeneration of the dopaminergic neurons. Besides the motor symptoms

(rigidity, tremor, dyskinesia), the intrinsic aspect of PD is a dysfunction of the GI tract. Patients experience nausea,

dysphagia, abdominal distension and constipation. Studies show that, in the colon of PD patients, there was an

increased expression of glial markers (GFAP, S100β, SOX10), and this was accompanied by the elevation of pro-

inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6) at the mRNA level. However, there was no correlation found

between the expression of glial markers or the inflammatory indicators and the severity of disease or GI

symptoms . Likewise, according to Clairembault et al. , in the colonic biopsies from PD patients, there was a

GFAP over-expression and a reduction in GFAP phosphorylation comparing to healthy controls. These results

suggest that EGCs may be involved in the GI dysfunction observed in the course of PD, nevertheless further

research is needed to understand the mechanism of this process.

Prion diseases are progressive and fatal neurodegenerative conditions which are caused by spreading of

pathological isoforms of cellular prion protein. This pathological process affects astrocytes in the CNS and EGCs in

the GI tract . However, it was assessed that the prion replication sites were found in the ENS prior to the
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replication in the CNS . Thus, the enteric glia may be essential in prion neuroinvasion, as the GI system

constitutes to the major exogenous prion protein entry site and acts as the starting point for the prions en route to

the brain .

Finally, many systemic diseases may cause alterations in the GI function inducing many effects on the EGCs. For

example: diabetes  or autoimmune diseases such as rheumatoid arthritis . Interstingly, some dietary

components have proved beneficial in protection against EGC alterations in those diseases, thus favoring the

restoration of GI altered functions.
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