

Yogurt Enriched with Isochrysis galbana

Subjects: **Food Science & Technology**

Contributor: Joana Matos

Microalgae are a valuable and innovative emerging source of natural nutrients and bioactive compounds that can be used as functional ingredients in order to increase the nutritional value of foods to improve human health and to prevent disease. The marine microalga *Isochrysis galbana* has great potential for the food industry as a functional ingredient, given its richness in $\omega 3$ long chain-polyunsaturated fatty acids (LC-PUFAs), with high contents of oleic, linoleic, alpha-linolenic acid (ALA), stearidonic, and docosahexaenoic (DHA) acids. This study focuses on the formulation of a functional food by the incorporation of 2% (w/w) of *I. galbana* freeze-dried biomass and 2% (w/w) of *I. galbana* ethyl acetate lipidic extract in solid natural yogurts preparation. In the functional yogurt enriched with microalgal biomass, the $\omega 3$ LC-PUFA's content increased (to 60 mg/100 g w/w), specifically the DHA content (9.6 mg/100 g ww), and the $\omega 3/\omega 6$ ratio (augmented to 0.8). The in vitro digestion study showed a poor bioaccessibility of essential $\omega 3$ LC-PUFAs, wherein linoleic acid (18:2 $\omega 6$) presented a bioaccessibility inferior to 10% and no DHA or eicosapentaenoic acid (EPA) was detected in the bioaccessible fraction of the functional yogurts, thus indicating a low accessibility of lipids during digestion. Notwithstanding, when compared to the original yogurt, an added value novel functional yogurt with DHA and a higher $\omega 3$ LC-PUFAs content was obtained. The functional yogurt enriched with *I. galbana* can be considered important from a nutritional point of view and a suitable source of essential FAs in the human diet. However, this needs further confirmation, entailing additional investigation into bioavailability through *in vivo* assays.

Isochrysis galbana

$\omega 3$ long chain-polyunsaturated fatty acids

functional ingredient

yogurt

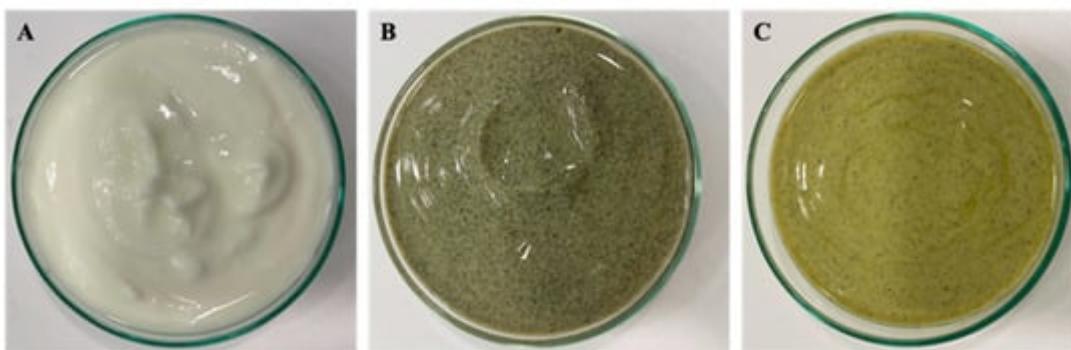
bioaccessibility

1. Introduction

Nowadays, consumers have become more conscious about food ingredients, which has led to a growing demand for healthy natural products, and reinforced microalgae as an emerging and rich source of nutrients to be used in food supplementation [1]. There has been an increasing interest in $\omega 3$ long-chain (LC) polyunsaturated fatty acids (PUFAs) for nutritional and pharmaceutical applications. The nutritional importance of $\omega 3$ LC-PUFAs, mainly eicosapentaenoic acid (EPA, 20:5 $\omega 3$) and docosahexaenoic acid (DHA, 22:6 $\omega 3$), for human health is well established. Nevertheless, since humans cannot synthesize, in adequate levels, fatty acids with more than 18 carbons, they must be obtained from seafood, which is the major source of LC-PUFAs, particularly EPA and DHA [2]. Several studies have shown that EPA and DHA play an important role in the functional growth of brain cells, in preventing/reducing cardiovascular and inflammatory diseases, and also in preventing the progression of some types of cancer [1][2][3][4][5]. DHA is the predominant synaptosomal plasma membrane LC-PUFA in the brain,

important for the normal neurological development. DHA has also been associated with positive effects on memory-related learning ability in Alzheimer's disease [4][6].

LC-PUFAs constitute a large share of marine algal lipids, with planktonic algae being the source of most $\omega 3$ FAs in fish [7]. There has been an increasing interest in microalgal lipids mainly because of their ability to synthesize high quantities of LC-PUFAs, as they are in fact the primary producers of $\omega 3$ LC-PUFAs, since they contain the necessary enzymes [8]. Microalgal lipids are divided into neutral lipids (triacylglycerols, diacylglycerols, and sterol esters), mainly located in lipid droplets in the cytoplasm or plastids, and polar lipids (phospho- and glycolipids), which build the fabric of cellular membranes [8]. The studied marine microalga *Isochrysis galbana* is a highly valuable source of natural bioactive compounds with important biological activities, such as hypocholesterolemic action [9]. The biomass of *I. galbana* is promising as a functional ingredient due to its considerably lipid content (20–30% dw) and richness of $\omega 3$ LC-PUFAs (mainly EPA and DHA) [2][10]. In addition, this marine microalga can provide highly valuable biological compounds, such as sterols, tocopherols, and fucoxanthin [2][9][11].


The change in dietary patterns in the human population, which has been particularly intense in the Western world, has led to an increase in $\omega 6$ FA consumption and a decrease in $\omega 3$ FA consumption, thus leading to an imbalance in the $\omega 3/\omega 6$ ratio level (desirably > 1). Very low $\omega 3/\omega 6$ ratios promote cardiovascular and inflammatory and autoimmune diseases, whereas increased levels of $\omega 3$ LC-PUFAs exert beneficial effects [12]. Given this background, efforts have been made to replace part of the vegetable or animal fat with marine lipids in foods such as mayonnaise, milk, bread, salad dressing, spreads, and yogurts [13]. Most food products have been prepared with fish oil, but, more recently, functional foods with a high content of algal $\omega 3$ LC-PUFAs have been tested, thus eliciting an industrial effort to produce such nutraceuticals. Moreover, the market for microalgae-containing foods has been expanding [14]. For instance, the microalgae *Arthrospira platensis*, *Chlorella vulgaris*, and *I. galbana* have been previously added as functional ingredients to biscuits [11][15], bread [16], and pasta [17].

Yogurt, one of the most consumed fermented dairy products in the world, is able to ensure the daily intake of nutrients and to bring positive impacts on consumers' health due to its active cultures that promote healthy digestion and boost the immune system, providing health benefits [18]. Therefore, yogurt is an ideal vehicle to incorporate $\omega 3$ LC-PUFAs [19]. Dairy products such as yogurts have shown a high potential as carriers of microalgal biomass, ensuring a high share of microalgae $\omega 3$ LC-PUFAs and their bioaccessibility, given yogurt's chemical and rheological properties, easiness to incorporate emulsions, and oxidative stability [3][20]. In fact, various yogurt products containing DHA have already been developed and marketed [19].

The aim of this work was to formulate a high-value functional food by the incorporation of freeze-dried biomass and ethyl acetate lipidic extract of *Isochrysis galbana* in commercial plain yogurt in order to increase $\omega 3$ LC-PUFAs content (mainly DHA) and to enhance $\omega 3$ LC-PUFAs bioaccessibility. Thus, based on the study's results, the formulation of the functional yogurt could be optimized for maximal bioavailability of $\omega 3$ LC-PUFAs.

2. Yogurt Enriched with Isochrysis galbana

The microalga incorporation level of 2% (w/w) in the solid yogurts was chosen based on the literature available over microalgal biomass incorporation into food products [11][15][17], in order to not compromise the sensory acceptability of the final product in terms of color, fishy flavor and odor. The functional yogurts with 2% (w/w) of *I. galbana* of freeze-dried biomass and 2% (w/w) of *I. galbana* ethyl acetate extract incorporation presented an innovative green tonality (**Figure 1**).

Figure 1. Yogurt products preparation: (A) Control Yogurt; (B) Yogurt with 2% (w/w) of *I. galbana* freeze-dried biomass; (C) Yogurt with 2% (w/w) of *I. galbana* ethyl acetate extract.

The sensory attributes of the novel functional yogurt and the consumer's acceptance need further evaluation.

2.1. Proximate Composition

The lipid bioaccessibility of the functional yogurts was high (exceeding 86%). In the control yogurt and both functional yogurts, the palmitic acid (16:0) was highly bioaccessible (100%). Oleic acid (18:1) was more bioaccessible in the yogurt with ethyl acetate extract ($18.1 \pm 0.9\%$) than in the control yogurt and functional yogurts (is presented in **Table 1**). The moisture content detected in *I. galbana* biomass was 10.0% ($16.4 \pm 0.1\%$ dry), which was expected since the studied microalgal biomass was freeze-dried. The dry matter of incorporation was mainly composed of protein and lipids ($38.7 \pm 0.9\%$ dry and $24.2 \pm 0.6\%$ dry), respectively. The ash fraction was also a significant share of the biomass ($14.6 \pm 0.0\%$ dry). The *I. galbana* ethyl acetate extract lipid content was $21.4 \pm 0.9\%$ dry. The observed proximate composition in the studied microalgal biomass is similar to that reported by other authors [10][17][21][22][23]. No DHA or EPA content was found to be bioaccessible in the functional yogurts, despite their initial presence.

Table 1. Proximate composition (%) of *I. galbana* freeze-dried biomass, *I. galbana* ethyl acetate extract, control yogurt, yogurt with 2% (w/w) of *I. galbana* freeze-dried biomass, and yogurt with 2% (w/w) of *I. galbana* ethyl acetate extract. yogurts an ideal food matrix for incorporating $\omega 3$ LC-PUFAs, making them more bioaccessible/bioavailable due to the preformed emulsions [3][27][28]. In view of the low bioaccessibility of $\omega 3$ LC-

Proximate Composition	<i>I. galbana</i> Freeze-Dried Biomass	<i>I. galbana</i> Ethyl Acetate Extract	Control Yogurt	<i>I. galbana</i> Freeze-Dried Biomass	<i>I. galbana</i> Ethyl Acetate Extract
	(% Dry Weight)	(% Dry Weight)	(% Wet Weight)	(% Wet Weight)	(% Wet Weight)
Moisture	7.6 ± 0.1	-	87.9 ± 0.1^a	86.7 ± 0.0^b	87.8 ± 0.1^a
Ash	14.6 ± 0.0	-	0.7 ± 0.0^a	1.0 ± 0.0^b	0.7 ± 0.0^a

Proximate Composition	<i>I. galbana</i> Freeze-Dried Biomass	<i>I. galbana</i> Ethyl Acetate Extract	Control Yogurt	Yogurt with <i>I. galbana</i> Freeze-Dried Biomass	Yogurt with <i>I. galbana</i> Ethyl Acetate Extract
	(% Dry Weight)	(% Dry Weight)	(% Wet Weight)	(% Wet Weight)	(% Wet Weight)
Protein	38.7 ± 0.0	-	3.2 ± 0.1 ^a	4.0 ± 0.1 ^b	3.2 ± 0.1 ^a
Lipid	24.5 ± 0.6	21.4 ± 0.9	2.3 ± 0.3 ^a	2.7 ± 0.0 ^a	2.6 ± 0.1 ^a

was verified by Zhang et al. [30], who reported that some of the FA in the microalga *Chlorella* were attached to the cell wall and linked to carbohydrates by an ether bond. Therefore, since microalgal polar lipids are located in the cell membrane and in *I. galbana*, the main portion of DHA was found to be present in the polar fraction; this can explain why the ω3 LC-PUFA was not bioaccessible.

The lipid class distribution before and after digestion (bioaccessible fraction) of *I. galbana* freeze-dried biomass, *I. galbana* ethyl acetate lipidic extract, control yogurt and functional yogurts is presented in **Table 2**.

Table 2. Lipid class distribution (% of total lipid) before and after digestion (bioaccessible fraction) of *I. galbana* freeze-dried biomass, *I. galbana* ethyl acetate extract, control yogurt, yogurt with 2% (w/w) of *I. galbana* freeze-dried biomass and yogurt with 2% (w/w) of *I. galbana* ethyl acetate extract. To achieve a higher level of bioaccessible LC-PUFAs, a much higher quantity of *I. galbana* freeze-dried biomass and ethyl acetate extract added to the yogurt than only 2% w/w would be needed. This would be unfeasible because of the impact on sensory properties. Therefore, it is important to find solutions to enhance the lipid bioaccessibility.

Sample	Lipid Classes				
	TAG ¹	FFA ²	Polar Lipids	Sterol	
<i>I. galbana</i> freeze-dried biomass [32]	Initial	36.8 ± 3.1 ^{aA}	32.6 ± 1.6 ^{aA}	14.8 ± 2.3 ^{aA}	15.9 ± 0.9 ^{aAB}
	Bioaccessible	nd ^{bλ}	53.9 ± 4.8 ^{bλ}	22.2 ± 2.6 ^{bλ}	23.9 ± 5.1 ^{aλ}
<i>I. galbana</i> ethyl acetate extract [33][34]	Initial	18.1 ± 1.1 ^B	55.8 ± 0.1 ^B	13.7 ± 0.0 ^A	12.5 ± 1.2 ^A
	Bioaccessible	-	-	-	-
Control Yogurt	Initial	47.1 ± 0.2 ^{ac} [35]	25.2 ± 0.3 ^{ac}	12.7 ± 0.0 ^{aAB}	15.0 ± 0.2 ^{aA}
	Bioaccessible	nd ^{bλ}	46.3 ± 1.8 ^{bλ}	28.8 ± 1.6 ^{bλ}	24.9 ± 0.2 ^{bλ}
Yogurt with <i>I. galbana</i> freeze-dried biomass [33][34]	Initial	59.1 ± 0.3 ^{ac}	12.9 ± 1.1 ^{aD}	20.2 ± 2.0 ^{aAC}	7.8 ± 2.1 ^{aAC}
	Bioaccessible	nd ^{bλ}	44.7 ± 4.5 ^{bλ}	32.1 ± 3.2 ^{bφλ}	23.2 ± 3.9 ^{bλ}
Yogurt with <i>I. galbana</i> ethyl acetate extract	Initial	52.8 ± 2.2 ^{aAC}	16.5 ± 2.3 ^{aD}	18.0 ± 2.2 ^{aAD}	12.8 ± 2.2 ^{aA}
	Bioaccessible	nd ^{bλ}	35.3 ± 2.0 ^{bφ}	39.6 ± 5.8 ^{bφ}	25.1 ± 4.9 ^{bλ}

biomass in yogurts was shown to be more effective in enhancing ω3 LC-PUFAs content (mainly DHA) than the ethyl acetate extract incorporation, which means that the green solvent lipid extraction from *I. galbana* was not as

efficacy was presented. The average digestibility and deviation from bioaccessibility of TAG3 in yogurt with 2% DHA-free EPA pose for the samples different fraction with the letters with a low lipid bioaccessibility. Nevertheless, the differences between the third and the fourth accessible samples (p < 0.05) from the original samples, a different high percentage of EPA. A third control was obtained, which statistical differences between samples (p < 0.05). For the bioaccessible samples, differences in TAGs within the yogurt did not respond to statistical differences between samples ($p < 0.05$).

2.3. Fatty Acid Profile

This study was able to prove the high potential of the microalga *I. galbana* as a functional ingredient, showing the importance of considering bioaccessibility in the evaluation of the nutritional value of microalgae-based functional foods, since microalgal bioactive compounds were poorly bioaccessible and only a small portion of the nutrients

are ready for absorption. Therefore, future work and research are required to increase *I. galbana* lipid digestibility and enhance $\omega 3$ -LC-PUFAs' (mainly DHA and EPA) bioaccessibility/bioavailability to humans, with microalgae cell-disruption pretreatments (such as high-pressure homogenization or ultrasound-assisted extraction) being possible

Table 8. Fatty acid profile for the bioaccessibility of a fatty acid functional yogurt/100 g dry weight. This study will be fundamental to evaluate the bioaccessibility of *I. galbana* freeze-dried biomass and *I. galbana* ethyl acetate extract, of control yogurt, yogurt with 2% (w/w) of *I. galbana* freeze-dried biomass and yogurt with 2% (w/w) of *I. galbana* ethyl acetate extract.

References

Fatty Acid	<i>I. galbana</i> Freeze-Dried Biomass		<i>I. galbana</i> Ethyl Acetate Extract		Control Yogurt		Yogurt with <i>I. galbana</i> Freeze-Dried Biomass		Yogurt with <i>I. galbana</i> Ethyl Acetate Extract		Ref.
	% Total Fatty Acids	mg/100 g Dry Weight	% Total Fatty Acids	mg/100 g Dry Weight	% Total Fatty Acids	mg/100 g Wet Weight	% Total Fatty Acids	mg/100 g Wet Weight	% Total Fatty Acids	mg/100 g Wet Weight	
14:0	5.5 ± 0.4 ^a	1060 ± 66 ^A	13.8 ± 0.1 ^b	2446 ± 17 ^B	12.6 ± 0.3 ^b	229 ± 6 ^C	12.3 ± 0.6 ^{cb}	268 ± 13 ^C	12.5 ± 0.4 ^b	255 ± 9 ^C	affect food Res.
16:0	9.3 ± 0.5 ^a	1777 ± 87 ^A	11.3 ± 0.2 ^b	1997 ± 37 ^B	34.4 ± 0.3 ^c	626 ± 5 ^C	32.4 ± 0.3 ^d	706 ± 7 ^C	33.2 ± 0.1 ^e	676 ± 3 ^C	
18:0	0.8 ± 0.0 ^a	145 ± 0 ^A	0.8 ± 0.0 ^a	133 ± 3 ^A	9.2 ± 0.3 ^b	168 ± 5 ^B	8.9 ± 0.3 ^b	195 ± 7 ^C	9.2 ± 0.2 ^b	187 ± 4 ^C	ardtii.
Σ SFA ¹	18.8 ± 0.7 ^a	3598 ± 137 ^A	29.3 ± 0.5 ^b	5183 ± 80 ^B	63.8 ± 0.4 ^c	1147 ± 3 ^C	60.5 ± 0.8 ^d	1319 ± 17 ^D	62.1 ± 0.6 ^{cd}	1264 ± 13 ^{DC}	
16:1 ω 7	4.3 ± 0.0 ^a	827 ± 7 ^A	5.7 ± 0.0 ^b	1004 ± 4 ^B	1.8 ± 0.0 ^c	33 ± 0 ^C	2.2 ± 0.0 ^d	48 ± 1 ^D	2.0 ± 0.0 ^e	41 ± 1 ^D	11, 22, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 5510, 5511, 5512, 5513, 5514, 5515, 5516, 5517, 5518, 5519, 5520, 5521, 5522, 5523, 5524, 5525, 5526, 5527, 5528, 5529, 55210, 55211, 55212, 55213, 55214, 55215, 55216, 55217, 55218, 55219, 55220, 55221, 55222, 55223, 55224, 55225, 55226, 55227, 55228, 55229, 552210, 552211, 552212, 552213, 552214, 552215, 552216, 552217, 552218, 552219, 552220, 552221, 552222, 552223, 552224, 552225, 552226, 552227, 552228, 552229, 5522210, 5522211, 5522212, 5522213, 5522214, 5522215, 5522216, 5522217, 5522218, 5522219, 5522220, 5522221, 5522222, 5522223, 5522224, 5522225, 5522226, 5522227, 5522228, 5522229, 55222210, 55222211, 55222212, 55222213, 55222214, 55222215, 55222216, 55222217, 55222218, 55222219, 55222220, 55222221, 55222222, 55222223, 55222224, 55222225, 55222226, 55222227, 55222228, 55222229, 552222210, 552222211, 552222212, 552222213, 552222214, 552222215, 552222216, 552222217, 552222218, 552222219, 552222220, 552222221, 552222222, 552222223, 552222224, 552222225, 552222226, 552222227, 552222228, 552222229, 5522222210, 5522222211, 5522222212, 5522222213, 5522222214, 5522222215, 5522222216, 5522222217, 5522222218, 5522222219, 5522222220, 5522222221, 5522222222, 5522222223, 5522222224, 5522222225, 5522222226, 5522222227, 5522222228, 5522222229, 55222222210, 55222222211, 55222222212, 55222222213, 55222222214, 55222222215, 55222222216, 55222222217, 55222222218, 55222222219, 55222222220, 55222222221, 55222222222, 55222222223, 55222222224, 55222222225, 55222222226, 55222222227, 55222222228, 55222222229, 552222222210, 552222222211, 552222222212, 552222222213, 552222222214, 552222222215, 552222222216, 552222222217, 552222222218, 552222222219, 552222222220, 552222222221, 552222222222, 552222222223, 552222222224, 552222222225, 552222222226, 552222222227, 552222222228, 552222222229, 5522222222210, 5522222222211, 5522222222212, 5522222222213, 5522222222214, 5522222222215, 5522222222216, 5522222222217, 5522222222218, 5522222222219, 5522222222220, 5522222222221, 5522222222222, 5522222222223, 5522222222224, 5522222222225, 5522222222226, 5522222222227, 5522222222228, 5522222222229, 55222222222210, 55222222222211, 55222222222212, 55222222222213, 55222222222214, 55222222222215, 55222222222216, 55222222222217, 55222222222218, 55222222222219, 55222222222220, 55222222222221, 55222222222222, 55222222222223, 55222222222224, 55222222222225, 55222222222226, 55222222222227, 55222222222228, 55222222222229, 552222222222210, 552222222222211, 552222222222212, 552222222222213, 552222222222214, 552222222222215, 552222222222216, 552222222222217, 552222222222218, 552222222222219, 552222222222220, 552222222222221, 552222222222222, 552222222222223, 552222222222224, 552222222222225, 552222222222226, 552222222222227, 552222222222228, 552222222222229, 5522222222222210, 5522222222222211, 5522222222222212, 5522222222222213, 5522222222222214, 5522222222222215, 5522222222222216, 5522222222222217, 5522222222222218, 5522222222222219, 5522222222222220, 5522222222222221, 5522222222222222, 5522222222222223, 5522222222222224, 5522222222222225, 5522222222222226, 5522222222222227, 5522222222222228, 5522222222222229, 55222222222222210, 55222222222222211, 55222222222222212, 55222222222222213, 55222222222222214, 55222222222222215, 55222222222222216, 55222222222222217, 55222222222222218, 55222222222222219, 55222222222222220, 55222222222222221, 55222222222222222, 55222222222222223, 55222222222222224, 55222222222222225, 55222222222222226, 55222222222222227, 55222222222222228, 55222222222222229, 552222222222222210, 552222222222222211, 552222222222222212, 552222222222222213, 552222222222222214, 552222222222222215, 552222222222222216, 552222222222222217, 552222222222222218, 552222222222222219, 552222222222222220, 552222222222222221, 552222222222222222, 552222222222222223, 552222222222222224, 552222222222222225, 552222222222222226, 552222222222222227, 552222222222222228, 552222222222222229, 5522222222222222210, 5522222222222222211, 5522222222222222212, 5522222222222222213, 5522222222222222214, 5522222222222222215, 5522222222222222216, 5522222222222222217, 5522222222222222218, 5522222222222222219, 5522222222222222220, 5522222222222222221, 5522222222222222222, 5522222222222222223, 5522222222222222224, 5522222222222222225, 5522222222222222226, 5522222222222222227, 5522222222222222228, 5522222222222222229, 55222222222222222210, 55222222222222222211, 55222222222222222212, 55222222222222222213, 55222222222222222214, 55222222222222222215, 55222222222222222216, 55222222222222222217, 55222222222222222218, 55222222222222222219, 55222222222222222220, 55222222222222222221, 55222222222222222222, 55222222222222222223, 55222222222222222224, 55222222222222222225, 55222222222222222226, 55222222222222222227, 55222222222222222228, 55222222222222222229, 552222222222222222210, 552222222222222222211, 552222222222222222212, 552222222222222222213, 552222222222222222214, 552222222222222222215, 552222222222222222216, 552222222222222222217, 552222222222222222218, 552222222222222222219, 552222222222222222220, 552222222222222222221, 552222222222222222222, 552222222222222222223, 552222222222222222224, 552222222222222222225, 552222222222222222226, 552222222222222222227, 552222222222222222228, 552222222222222222229, 5522222222222222222210, 5522222222222222222211, 5522222222222222222212, 5522222222222222222213, 5522222222222222222214, 5522222222222222222215, 5522222222222222222216, 5522222222222222222217, 5522222222222222222218, 5522222222222222222219, 5522222222222222222220, 5522222222222222222221, 5522222222222222222222, 5522222222222222222223, 5522222222222222222224, 5522222222222222222225, 5522222222222222222226, 5522222222222222222227, 5522222222222222222228, 5522222222222222222229, 55222222222222222222210, 55222222222222222222211, 55222222222222222222212, 55222222222222222222213, 55222222222222222222214, 55222222222222222222215, 55222222222222222222216, 55222222222222222222217, 55222222222222222222218, 55222222222222222222219, 55222222222222222222220, 55222222222222222222221, 55222222222222222222222, 5522222222222

eicosapentaenoic acid was higher from phospholipid food products than from mono and triacylglycerol food products in a dynamic gastrointestinal model. *Food Sci. Nutr.* 2013, 1, 409–415.

Fatty Acid	<i>I. galbana</i> Freeze-Dried Biomass		<i>I. galbana</i> Ethyl Acetate Extract		Control Yogurt		Yogurt with <i>I. galbana</i> Freeze-Dried Biomass		Yogurt with <i>I. galbana</i> Ethyl Acetate Extract	
	% Total Fatty Acids	mg/100 g Dry Weight	% Total Fatty Acids	mg/100 g Dry Weight	% Total Fatty Acids	mg/100 g Wet Weight	% Total Fatty Acids	mg/100 g Wet Weight	% Total Fatty Acids	mg/100 g Wet Weight
	2	2	2	2	2	2	2	2	2	2
$\Sigma\omega 3$	32.5 \pm 0.1 ^a	6217 \pm 16 ^A	25.1 \pm 0.1 ^b	442 ^{[24][25]} 15 ^B	1.2 \pm 0.0 ^c	22 \pm 1 ^C	2.7 \pm 0.2 ^d	60 \pm 4 ^D	1.6 \pm 0.4 ^c	32 \pm 9 ^C
$\Sigma\omega 6$	14.9 \pm 0.0 ^a	2847 \pm 1 ^A	12.2 \pm 0.6 ^b	2159 \pm 104 ^B	2.7 \pm 0.1 ^c	48 \pm 2 ^C	3.4 \pm 0.1 ^d	74 \pm 1 ^C	3.1 \pm 0.1 ^c	63 \pm 2 ^C
$\Sigma\omega 3/\Sigma\omega 6$	2.2 \pm 0.0 ^a	2.2 \pm 0.0 ^A	2.1 \pm 0.1 ^a	2.1 \pm 0.1 ^A	0.4 \pm 0.0 ^b	0.4 \pm 0.0 ^B	0.8 \pm 0.1 ^c	0.8 \pm 0.1 ^C	0.5 \pm 0.1 ^b	0.5 \pm 0.1 ^B

25. Barkallah, M.; Dammak, M.; Louati, F.; Hentati, F.; Hadri, B.; Mechichi, T.; Ayadi, M.A.; Fendri, I.; Attia, H.; Abdelkafi, S. Effect of *Spirulina platensis* fortification on physicochemical, textural, functional and sensory properties of yogurt during fermentation and storage. *LWT Food Sci. Technol.* 2017, **84**, 323–330.

26. Paulo, M.C.; Marques, J.; Cardoso, C.; Coutinho, J.; Gomes, R.; Gomes-Bispo, A.; Afonso, C.; de Oliveira, D. *FA and EPA profiles of samples different (50% casein) determined by HPLC and GC*. *Food Technol. Biotechnol.* 2011, **49**, 100–106.

Bandarra, N.M. The development of a novel functional food: Bioactive lipids in yogurts enriched

2.3.2 Fatty Acid Profile of the Functional Yoghurts

27. Nielsen, N.S.; Debnath, D.; Jacobsen, C. Oxidative stability of fish oil enriched drinking yoghurt. *Int. Dairy J.* 2007, 17, 1478–1485.
28. Ottestad, I.; Nordvi, B.; Vogt, G.; Holck, M.; Halvorsen, B.; Brønner, K.W.; Retterstøl, K.; Holven, K.B.; Nilsson, A.; Ulven, S.M. Bioavailability of n-3 fatty acids from n-3- enriched foods and fish oil with different oxidative quality in healthy human subjects: A randomised single-meal cross-over study. *J. Nutr. Sci.* 2016, 5, 1–8.
29. Bernaerts, T.M.M.; Verstreken, H.; Dejonghe, C.; Gheysen, L.; Foubert, I.; Grauwet, T.; Van Loey, A.M. Cell disruption of *Nannochloropsis* sp. improves in vitro bioaccessibility of carotenoids and ω 3-LC-PUFA. *J. Funct. Foods* 2020, 65, 103770.
30. Zhang, C.; Tang, X.; Yang, X. Overcoming the cell wall recalcitrance of heterotrophic Chlorella to promote the efficiency of lipid extraction. *J. Clean Prod.* 2018, 198, 1224–1231.
31. Costa, S.; Afonso, C.; Cardoso, C.; Batista, I.; Chaveiro, N.; Nunes, M.L.; Bandarra, N.M. Fatty acids, mercury, and methylmercury bioaccessibility in salmon (*Salmo salar*) using an in vitro model: Effect of culinary treatment. *Food Chem.* 2015, 185, 268–276.
32. Señoráns, M.; Castejón, N.; Señoráns, F.J. Advanced Extraction of Lipids with DHA from *Isochrysis galbana* with Enzymatic Pre-Treatment Combined with Pressurized Liquids and Ultrasound Assisted Extractions. *Molecules* 2020, 25, 3310.

33. Brennan, B.; Regan, F. In-situ lipid and fatty acid extraction methods to recover viable products from *Nannochloropsis* sp. *Sci. Total Environ.* 2020, 748, 142464.
34. Kumar, S.J.; Kumar, J.A.; Dash, A.; Scholz, P.; Banerjee, R. Sustainable green solvents and techniques for lipid extraction from microalgae: A review. *Algal Res.* 2017, 21, 138–147.
35. Cavonius, L.R.; Albers, E.; Undeland, I. In Vitro bioaccessibility of proteins and lipids of pH-shift processed *Nannochloropsis oculata* microalga. *Food Funct.* 2016, 7, 2016–2024.

Retrieved from <https://encyclopedia.pub/entry/history/show/27860>