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The lymphatic network is a unidirectional and low-pressure vascular system that is responsible for the absorption of

interstitial fluids, molecules, and cells from the peripheral tissue, including the skin and the intestines. Targeting the

lymphatic route for drug delivery employing traditional or new technologies and drug formulations is exponentially

gaining attention in the quest to avoid the hepatic first-pass effect. 

lymphatics  cardiovascular diseases  drug delivery route  nanotechnology

1. Introduction

Cardiovascular diseases (CVD) are one of the leading causes of death worldwide . CVD include coronary heart

disease, myocardial infarction (MI), heart failure (HF), stroke, and artery diseases . Treatments for cardiovascular

diseases are numerous, and the routes of administration are diverse. The chosen drug delivery route is a key

determinant of the pharmacodynamics, pharmacokinetics, as well as toxicity of the delivered compounds. Yet, side

effects or therapeutic failures are raising concerns, highlighting the need for new administration routes and

improved formulation of molecules that reduce their degradation by hepatic metabolism. Drug delivery refers to the

methods, approaches, or strategies employed for the transport of pharmaceutical compounds to an organism to

achieve a desired therapeutic outcome. With this intent, various routes of administration are used to manage CVD

and their risk factors, including parenteral (intravenous (IV), intradermal (ID), intramuscular (IM), subcutaneous

(SC), and intraperitoneal (IP)), and transmucosal (oral, nasal, pulmonary, ocular, and genital) and transdermal

route . Drug absorption and transport through the lymphatic system makes it possible to avoid hepatic

metabolism and is a privileged target in pathologies, such as particular types of cancer (chemotherapeutics ) or

vaccines  (HIV ), but also for macromolecules , and the extensively hepatic-metabolized compounds .

2. Conventional and Novel Therapies to Treat CVD

Historically, small molecules have been used for the treatment of CVD. However, these molecules improve the

symptoms and slow down the disease progression without having an actual regenerative effect on the affected

tissues or organs . Thus, the remaining unmet clinical needs necessitated the urgent seek for other potential

therapeutic options.

Gene therapy is one of the most promising treatment strategies for CVD , inherited or acquired,

through targeting the causative genes engaged in the induction and progression of the disease. It works through

replacing defective genes, silencing overexpressed ones or providing functional copies of specific therapeutic
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genes, thanks to DNA, RNA (siRNA, microRNA, mRNA), and antisense oligonucleotides (ASO) . Back in the

1950s and 1960s, several attempts were made to directly transfect cells with DNA and RNA. Nevertheless, in vivo

studies failed to show a noticeable success. Thus, selecting a suitable vector to deliver gene therapy is as

important as selecting the agent itself . Generally, vectors can be divided into viral and non-viral. The most

commonly used viral vectors are retrovirus (RV), adenovirus (AV), adeno-associated virus (AAV), and lentivirus .

The most commonly used non-viral vectors include lipid-based vectors using cationic lipids and polymer-based

vectors using cationic polymers . Cationic lipids complex with the genetic materials to form lipoplexes or lipid

nanoparticles (LNP), while cationic polymers form polyplexes . In 2012, cardiovascular gene therapy was the

third most common application for gene therapy (8.4% of the total gene therapy trials). However, clinically, it is still

in the infancy stage, and a lot of effort is yet to be expended to correct the underlying basal molecular mechanisms

behind different cardiovascular disorders .

3. Treating CVD through Various Administration Routes

3.1. Oral Administration

Among the various routes of administration, the oral route is the most commonly employed. It exhibits many

advantages, including pain avoidance, ease of administration, patient compliance, reduced care cost, and low

incidence of cross-infection. Furthermore, it is amenable to various types and forms of pharmaceuticals  (Table

1). While some drugs are intended to target the gastrointestinal tract (GIT), the majority are employed to exert a

systemic therapeutic effect. Nevertheless, the oral bioavailability of most pharmaceutical compounds depends

mainly on their solubility, permeability, and stability in the GIT environment .

Table 1. Oral delivery of various treatments for CVD.
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Condition Intervention and Identifier Target Dose and Outcome

Diabetes Metformin
 

From 500 to 850 mg, 2–3

times a day, during the meal

Diabetes

Sulfonylureas

Meglitinide
 

Dosage is very different from

one class of medication to

another 

Diabetes Acarbose,

Miglitol

Carbohydrate digesting

enzymes in the brush

border

50 mg three times daily (up to

100 mg) 
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Condition Intervention and Identifier Target Dose and Outcome

Voglibose

Diabetes

Rosiglitazone

Pioglitazone

PPAR-α

Rosiglitazone: 4 mg per day

(up to 8 mg)

Pioglitazone: 15–30 mg per

day 

Diabetes

Sitaglipin

Vildaglipin

Saxaglipin

Linaglipin

Aloglipin

DPP4

2.5–100 mg once daily

depending on the inhibitor

used 

Diabetes

Dapagliflozin

Canagliflozin

Empagliflozin

SGLTP2

Dapagliflozin: 2.5–10 mg daily

Canagliflozin: 100–300 mg

Empagliflozin: 5–25 mg daily

Diabetes

AG019

(NCT03751007) or in

combination with the anti-CD3

monoclonal antibody teplizumab

 

2 or 6 capsules per day for 8

weeks (repeated dose) or for

one day (single dose)

Diabetes Insulin nanocarriers   Protection of insulin from

enzymatic degradation

Enhancement of stability,

intestinal permeability, and
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Condition Intervention and Identifier Target Dose and Outcome

bioavailability 

Diabetes

Electrostatically-complexed

insulin with partially uncapped

cationic liposomes
 

Improved insulin

pharmacokinetic profile 

Diabetes Insulin-loaded PLGA
 

Improved bioavailability and

sustained hypoglycemic effect

Diabetes

Exenatide combined to phase-

changeable nanoemulsion with

medium-chain fatty acid
 

Enhancement of intestinal

absorption and lymphatic

transport 

HTN
Prazosine Terazosine

Doxazosine
Alpha-adrenergic receptor

Prazosine: 3–7.5 mg per day

in two doses

Terazosine: 1–9 mg per day in

the evening at bedtime

Doxazosine: 4 mg per day 

HTN Clonidine Methyldopa
Alpha-adrenergic receptor

(agonists)

Clonidine: 0.1 mg twice daily

Methydopa: 250 mg two to

three times daily 

HTN Carvedilol into nanoemulsion Beta-adrenergic receptors

Significant improvement in its

absorption, permeability, and

bioavailability 

HTN Valsartan, Ramipril and

Amlodipine into nanoemulsion

  Enhanced solubility, oral

bioavailability, and
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Condition Intervention and Identifier Target Dose and Outcome

pharmacological outcome 

HTN
Felodipine-loaded PLGA

nanoparticles
Calcium-channel

Sustained drug release both in

vitro and ex vivo 

MI

HF

HTN

Arrhythmia

ß-blocker Beta-adrenergic receptors
Acebutol: 200 mg twice daily

MI

HF

HTN

Conversion enzyme

inhibitors

Conversion enzyme Captopril: 100 mg per day 

MI

HF

HTN

Valsartan

Losartan

Angiotensin II
20 mg twice a day, up to 160

mg 

HF

HTN

Hydrochlorothiazide

Bumetanide

Angiotensin/neprilysin

receptor

49 mg/51 mg twice daily and

doubled after 2–4 weeks 

HF

HTN

Sacubitril

Valsartan

Calcium channel

5–10 mg daily 

60 mg three times daily 

HTN Amlodipine Calcium channel 5–10 mg daily 
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Condition Intervention and Identifier Target Dose and Outcome

Arrhythmia Diltiazem 60 mg three times daily 

HF Ivabradine
 

Bradycardic

5–7.5 mg twice a day 

HF

MI

Eplerenone

Spironolactone

Aldosterone
50 mg once a day  and

12.5–25 mg with each intake

HF

Arrhythmia

Digoxin
 

0.25 mg once daily 

HF

MI

HCL

Statin HMG-CoA 10 mg once daily 

MI Aspirin Platelets
325 mg, then 81 mg per day

MI

Clopidogrel

Prasugrel

Ticagrelor

Platelets

300 mg, then 75 mg daily with

aspirin

60 mg, then 10 mg daily

180 mg, then 90 mg twice a

day 

HCL Ezetimibe
Intestinal cholesterol

absorption
10 mg once daily 
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HLD

Tricor

Triglide
 

Fenofibrates 100–300 mg per

day 

HCL

HLD

Atorvastatin formulated into

ethylcellulose nanoparticles  

Enhanced atorvastatin’s

lymphatic absorption and oral

bioavailability 

HCL

HLD

Atorvastatin formulated into

nanocrystals prepared with

poloxamer 188
 

Improved atorvastatin’s gastric

solubility and bioavailability 

Reduced circulating

cholesterol, TG and LDL

HCL

HLD

Atorvastatin formulated into

polycaprolactone nanoparticles  

Enhanced atorvastatin’s

bioavailability 

HCL

HLD

Nanostructured lipid carriers
 

Enhanced atorvastatin

bioavailability by 2.1 fold

compared to the commercial

product: lipitor

Reduced the serum level of

cholesterol, TG and LDL 

HCL

HLD

Nanoemulsion
 

Increased the bioavailability of

atorvastatin compared to the

commercial tablet ozovas

HCL

HLD

Simvastatin

Rosuvastatin

  Improved bioavailability via

lymphatic uptake 
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PPAR- α: peroxisome proliferator-activated receptor- α; DPP4: dipeptidyl peptidase-4; SGLTP2: Sodium glucose

co-transporter-2; PLGA: Poly lactic-co-glycolic acid; HTN: Hypertension; MI: Myocardial infarction; HF: Heart

failure; HCL: Hypercholesterolemia; HMG-CoA reductase: Hydroxymethyl glutaryl coenzyme A reductase; HLD:

Hyperlipidemia; TG: Triglycerides; LDL: Low density lipoprotein.

3.2. Subcutaneous Injection

Subcutaneous injections consist of injecting a molecule under the dermis, in the SC cell layer (interstitial space),

and slightly before the muscle, mostly in the abdomen or thigh. The injected molecules will, therefore, either be

degraded or phagocytized at the site of injection and join the lymphatic system or the bloodstream . To target the

lymphatic system exclusively, this type of injection must be combined with the use of macromolecules. As

described in Table 2, subcutaneous injections are used as treatment for various conditions 

.

Table 2. Therapies targeting CVD using subcutaneous injection.
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twice a day
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once daily
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once daily
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once a week

Dulaglutide: 0.75–1.5

mg once a week

Diabetes

Vaccine formed

of virus-like

particles coupled

to IAPP

 

Against the insoluble

IAPP- derived

amyloid aggregates
 

Three doses—10 µg

Strong immune

response against these

aggregates and
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production Diminished

the amyloid deposits in

the pancreatic islets,
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the pro-inflammatory
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amyloid-induced
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Intervention and

Identifier
Therapy Target

Stage and

Status
Dose and Outcome

HTN hR32 vaccine
 

Renin-derived

peptide  

Five doses—500 µg

Reduced systolic blood

pressure by 15 mmHg

HTN

Angiotensin I

vaccine

(PMD3117)

     

Three or four doses—

100 µg

The vaccine failed to

reduce the blood

pressure 

HTN AngI-R vaccine
 

Modifiedendogenous

angiotensin I peptide  

Four doses—50 µg
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systolic blood pressure

and reduced

angiotensin I/II level 

HTN ATRQβ-001
 

Angiotensin II type I

receptors  

Two doses—100 µg

Protective role against

target organ damage

induced by

hypertension 
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  Angiotensin II type I

receptors
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Attenuated the
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hemodynamic
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Intervention and

Identifier
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Stage and

Status
Dose and Outcome
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HTN
CYT006-AngQb
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Against angiotensin II

 

100 or 300 µg

Reduction in blood

pressure and reduced

ambulatory daytime

blood pressure 

HF

HTN

Ang II-KLH

vaccine
 

Angiotensin II
 

Three doses—5 µg

Suppressed post-MI

cardiac remodeling

and improved cardiac

function 

MI

Celecoxib

loaded in

nanoparticles
     

Promoted

vascularization in the

ischemic myocardium

and delayed HF

progression 

MI

Chitosan-

hyaluronic acid

based hydrogel

containing

deferoxamine-

PLGA

nanoparticles

     

Persistent

neovascularization in

mice 

HCL Alirocumab   PCSK9   One dose every two

weeks 
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Intervention and

Identifier
Therapy Target

Stage and

Status
Dose and Outcome

Evolocumab

HCL Inclisiran
 

PCSK9
 

Two doses per year 

HoFH

HeFH

severe

HCL

Mipomersen

(NCT00607373)

(NCT00706849)

(NCT00770146)

(NCT00794664)

ASO ApoB Approved

200 mg once/week.

Phase III: reduction in

LDL-C 

ASCVD

HCL

HeFH

Inclisiran

(NCT03399370)

(NCT03400800)

(NCT03397121)

siRNA PCSK9 Approved

284 mg inclisiran,

injected on day 1, day

90 and then twice/year

Phase III: reduction in

LDL-C level 

FCS

Volanesorsen

(NCT02211209)

ASO ApoC3 Approved

300 mg once/week

Phase III: reduction in

mean plasma APOC3

and TG level 

Elevated

LP(a)

ISIS-APO(a)Rx

(NCT02160899)

ASO APO(a) Phase II

(Complete)

Multiple escalating

(100–300 mg) doses,

injected on a weekly

interval for 4 weeks

each
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Condition
Intervention and

Identifier
Therapy Target

Stage and

Status
Dose and Outcome

Phase I/II: reduction in

plasma Lp(a)

concentration 

Elevated

LP(a)

CVD

AKCEA-APO(a)-

LRx

(NCT03070782)

(NCT02414594)

(NCT04023552)

GalNAc3

conjugated-

ASO

APO(a)

Phase III

(Recruiting)

80 mg administered

monthly

Phase I/II: reduction in

plasma Lp(a) 

HTG

CVD

FCS

AKCEA-

APOCIII-LRx

(NCT02900027)

(NCT03385239)

(NCT04568434)

GalNAc3

conjugated-

ASO

APOC3

Phase III

(Recruiting)

Multiple dosing

injected as once/4

weeks for up to 49

weeks

Phase II: reduction in

ApoC3 and TG levels

HTG

FH

HLP

Vupanorsen

(NCT02709850)

(NCT04459767)

(NCT04516291)

ASO ANGPTL3

Phase IIb

(Active, Not

recruiting)

Multiple escalating

dosing (60–160 mg,

once/2 or 4 weeks)

Phase I: reduction in

TG and LDL-C levels

HCL Neutralizing

antibodies

against PCSK9

  PCSK9   Three doses—5–50 µg

Long-lasting reduction

in the level of total

cholesterol, VLDL and
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hypercholesterolemia; AngII-KLH: Angiotensin II—keyhole-limpet hemocyanin; PCSK9: Proprotein convertase

subtilisin/kexin type 9; ASO: Antisense oligonucleotides; ApoB: Apolipoprotein B; LDL-C: low density lipoprotein
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Condition
Intervention and

Identifier
Therapy Target

Stage and

Status
Dose and Outcome

chylomicron 

HCL AT04A
 

PCSK9
 

Five doses

Strong and persistent

anti-PCSK9 antibody

production, reduced

plasma cholesterol

level, attenuated

progression of

atherosclerosis and

reduced vascular and

systemic inflammation

HCL AT04A
 

PCSK9
 

Four doses—15 µg

and 75 µg

Reduced serum LDL-C

level and elevated anti-

PCSK9 antibody titer

HCL

A peptide

representing the

mouse

ANGPTL3

 

Angiopoietin-like

proteins 3

(ANGPTL3)
 

Three doses—5 µg

Reduced steady-state

plasma TGs and

promoted LPL activity
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Triglycerides; LP(a): Lipoprotein(a); APO(a): Apolipoprotein (a); CVD: Cardiovascular diseases; GalNAc3:

Triantennary N-acetyl galactosamine; HTG: Hypertriglyceridemia; FH: Familial hypercholesterolemia; HLP:

Hyperlipoproteinemia; ANGPTL3: Angiopoietin-like proteins 3; VLDL: Very low density lipoprotein; LPL: Lipoprotein

lipase.

3.3. Intradermal Injection

Lymphatic capillaries are present in the dermis and, thus, preferentially take up the injected molecules. Unlike the

blood capillaries, initial lymphatics lack the basement membrane underlying the endothelial layer. The distal part of

initial LV is exclusively composed of LECs with button-like junctions , leading to capillaries that have inter-

endothelial gaps with size ranges from a few nanometers to several microns . Small particles (<10 nm)  and

medium-sized macromolecules (up to 16 kDa)  are mainly transported away from the interstitial spaces by

blood capillaries, thanks to mass transport . In contrast, lymphatic access of large particles with diameters

exceeding 100 nm is hindered by their restricted movement through the interstitium, via diffusion and convection .

In between, particles with a size of 10–100 nm  and macromolecules with a size of 20–30 kDa  show

preferential uptake into the highly permeable lymphatic capillaries either passively (paracellular) or actively

(transcellular) through the lymphatic endothelial cells . Indeed, it has been shown that the optimal diameter to

target the lymphatic vessels in the dermis is 5 to 50 nm in mice .

Table 3 presents several vaccines used for diabetes through intradermal injection .

Table 3. Intradermal administration as treatment for diabetes.

110. Reddy, S.T.; Rehor, A.; Schmoekel, H.G.; Hubbell, J.A.; Swartz, M.A. In vivo targeting of dendritic
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111. Thrower, S.L.; James, L.; Hall, W.; Green, K.M.; Arif, S.; Allen, J.S.; Van-Krinks, C.; Lozanoska-
Ochser, B.; Marquesini, L.; Brown, S.; et al. Proinsulin peptide immunotherapy in type 1 diabetes:
Report of a first-in-man Phase I safety study. Clin. Exp. Immunol. 2009, 155, 156–165.

112. Dul, M.; Nikolic, T.; Stefanidou, M.; McAteer, M.; Williams, P.; Mous, J.; Roep, B.; Kochba, E.;
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intradermally administered antigen specific immunotherapy. Int. J. Pharm. 2019, 562, 303–312.
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proinsulin peptide—For type 1 diabetes. Lancet Diabetes Endocrinol. 2020, 8, 470–472.
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Hum. Vaccin. Immunother. 2017, 13, 2123–2129.
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2014, 29, 52–59.

117. Rodger, M.A.; King, L. Drawing up and administering intramuscular injections: A review of the
literature. J. Adv. Nurs. 2000, 31, 574–582.

118. Kivelä, R.; Havas, E.; Vihko, V. Localisation of lymphatic vessels and vascular endothelial growth
factors-C and -D in human and mouse skeletal muscle with immunohistochemistry. Histochem.
Cell Biol. 2007, 127, 31–40.

119. Abai, A.M.; Hobart, P.M.; Barnhart, K.M. Insulin delivery with plasmid DNA. Hum. Gene Ther.
1999, 10, 2637–2649.

120. Phrommintikul, A.; Kuanprasert, S.; Wongcharoen, W.; Kanjanavanit, R.; Chaiwarith, R.;
Sukonthasarn, A. Influenza vaccination reduces cardiovascular events in patients with acute
coronary syndrome. Eur. Heart J. 2011, 32, 1730–1735.

121. Gurfinkel, E.P.; Mendiz, O.; Mautner, B. Flu vaccination in acute coronary syndromes and planned
percutaneous coronary interventions (FLUVACS) study. Eur. Heart J. 2004, 25, 25–31.
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Association between pneumococcal vaccination and cardiovascular outcomes: A systematic
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Condition
Intervention and

Identifier
Target Dose and Outcome

Diabetes
Proinsulin peptide

vaccine C19-A3
CD4 T cells

Three equal doses—10–100 µg

Vaccine was well tolerated 

Diabetes

C19-A3

(NCT02837094)

CD4 T cells

Three doses—10 ug

In vitro and ex vivo studies of in human skin reported

rapid diffusion of the injected particles through the skin

layers and preferential uptake by Langerhans cells in the

epidermis, which have a primary role in the tolerance

mechanism 

[111]
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DC: Dendritic cells; Treg: immunoregulatory T cells.

3.4. Intramuscular Injection

Intramuscular injections are used to target the deeper muscle tissue that is highly irrigated. This route of injection

allows a rapid absorption and prolonged action. The medication would enter the bloodstream directly and, thus,

allow the “bypass” of the hepatic metabolism. It is mainly used for the administration of vaccines  (hepatitis, flu

virus, tetanus) or with specific pathologies, such as rheumatoid arthritis and multiple sclerosis. It is frequently

performed in the upper arm  but also in the hip or thigh . It is possible to administer up to 5 mL via this

route, based on the site of injection . As lymphatic vessels are present in the skeletal muscle and the

connective tissue , this leads to the assumption the lymphatic system might be involved in the drug absorption

following intramuscular administration. As presented in Table 4, several conditions are treated with this type of

injection .

Table 4. CVD therapies using intramuscular administration.
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Condition
Intervention and

Identifier
Target Dose and Outcome

Diabetes
PIpepTolDC vaccine

(NCT04590872)

Tolerogenic

DC Vaccine

One dose and another after 28 days

No results yet, but, it is believed to be able to produce

proinsulin-specific Treg [113]

[114]

[115] [116]

[117]

[118]

[119][120][121][122]

Condition Intervention and Identifier Target Dose and Outcome

Diabetes
Preproinsulin-encoding

plasmid DNA

Pancreatic

islets

40% higher survival rate as compared to the

control group 

HTN

CoVaccine HT

(NCT00702221)

Against

angiotensin II

Three doses

Terminated in 2016 due to dose-limiting adverse

effects

HTN

AGMG0201

vaccine

Against

angiotensin II

High or low dose (0.2 mg plasmid DNA and 0.5 or

0.25 mg Ang II-KLH conjugate) Ongoing

ACS

HF

CVD

Inactivated influenza

vaccine

  Less frequent hospitalization from ACS,

hospitalization from HF and stroke 

[119]

[120]
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HTN: Hypertension; AngII-KLH: Angiotensin II—keyhole-limpet hemocyanin; ACS: Acute coronary syndrome; CVD:

cardiovascular disease; HF: Heart failure; MI: Myocardial infarction.

3.5. Intramyocardial Injection

Direct intramyocardial injection is the most effective and commonly used way for gene delivery to the heart owing

to its ability to achieve a high concentration of the injected compound at the injection site . It is a preferential

route to directly target lymphatic vessels due to their high density in the myocardium . Various CVD and

their treatments via intramyocardial injection are presented in Table 5 

.

Table 5. Use of intramyocardial injections in several therapies targeting CVD.
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Condition Intervention and Identifier Target Dose and Outcome

MI Influenza vaccine
 

Risk of cardiovascular-related death was

significantly lower 

CVD

MI

Pneumococcal vaccines
 

Reduced incidence of cardiovascular events and

mortality

Reduced risk of MI in the elderly 

MI

HF

Stroke

Influenza vaccine

(NCT02831608)
 

The primary endpoints: death, new MI and stent

thrombosis

Secondary endpoints: patients with hospitalization

for HF
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Condition
Intervention and

Identifier
Therapy Target

Stage and

Status
Dose and Outcome

HF Ad5.hAC6

(NCT007)

Ad5 AC6 Phase I/II

(Completed)

Single administration of

escalating doses (3.2 × 10  vp

to 10  vp)

9

12
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Condition
Intervention and

Identifier
Therapy Target

Stage and

Status
Dose and Outcome

Phase II: Reduced HF

admission rate. Enhanced left

ventricular function beyond the

optimal HF therapy following a

single administration 

HF

Ad5.hAC6

(NCT03360448)

Ad5 AC6

Phase III

(withdrawn)

Phase III: withdrawn for re-

evaluation

HF

MYDICAR

(NCT00454818)

AAV1 SERCA2a
Phase I/II

(Completed)

Single administration of

escalating doses (1.4 × 10 –1

× 10  DRP of

AAV1/SERCA2a)

Phase I/II (CUPID): high-dose

treatment resulted in increased

time and reduced frequency of

cardiovascular events within a

year and reduced

cardiovascular hospitalizations

HF

MYDICAR

(NCT01643330)

AAV1 SERCA2a

Phase IIb

(completed)

Single infusion of 1 × 10  DRP

of AAV1/SERCA2a

Phase IIb (CUPID-2b): no

improvement was observed at

the tested dose in patients with

HF during the follow-up period

HF MYDICAR

(NCT01966887)

AAVI SERCA2a Phase II

(Terminated)

1 × 10  DRP of

AAV1/SERCA2a as a single

intracoronary infusion
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Condition
Intervention and

Identifier
Therapy Target

Stage and

Status
Dose and Outcome

Phase II: no improvement

observed in the ventricular

remodeling.The study

terminated driven by the

CUPID-2 trial neutral outcome

HF

SRD-001

(NCT04703842)

AAVI SERCA2a

Phase I/II

(Active, not

recruiting)

Single administration of 3 ×

10  vg

CUPID-3: aims to investigate

the safety and efficacy of SRD-

001 in anti-AAV1 neutralizing

antibody-negative subjects with

HFrEF

HF

CVD

INXN-4001

(NCT03409627)

Non-viral,

triple

effector

plasmid

SDF-1α,

S100A1,

VEGF-

165

Phase I

(Completed)

Single 80 mg dose, given in 40

mL or 80 mL at a rate of 20

mL/min

Phase I: an improvement in the

quality of life in 50% of patients

was reported 

HF

ACRX-100

(NCT01082094)

Plasmid

DNA
SDF-1

Phase I

(Completed)

Single escalating doses,

injected at multiple sites

Preclinical studies: enhanced

vasculogenesis and improved

cardiac function reported with

all doses 

HF JVS-100 Plasmid

DNA

SDF-1 Phase II Single injection of escalating

doses (15 and 30 mg)
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Condition
Intervention and

Identifier
Therapy Target

Stage and

Status
Dose and Outcome

(NCT01643590) (Completed) Phase II (STOP-HF): JVS-100

showed potential to improve

cardiac function through

reducing left ventricular

remodeling and improving

ejection fraction 

HF

JVS-100

(NCT01961726)

Plasmid

DNA
SDF-1

Phase I/II

(Unknown)

Single injection of escalating

doses (30 and 45 mg)

Phase I (RETRO-HF): JVS-100

showed promising signs of

clinical efficacy 

HF

AZD8601

(NCT02935712)

(NCT03370887)

mRNA
VEGF-

A165

Phase IIa

(Active, not

recruiting)

Single injection of escalating

doses (3 mg and 30 mg)

Preclinical studies: promoted

angiogenesis, improved cardiac

function and enhanced survival

were reported 

Phase I: ID injection of

AZD8601 was well tolerated

and enhanced the basal skin

blood flow 

HF NAN-101

(NCT04179643)

AAV I-1c Phase I

(Recruiting)

Single escalating doses (3 ×

10  vg–3 × 10  vg) of NAN-

101

Preclinical studies:

enhancement in left ventricular

ejection fraction and improved

cardiac performance 
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HF: Heart failure; hAC6: Human adenylyl cyclase type 6; vp: Virus particles; AAV: Adeno-associated virus;

SERCA2a: Sarcoplasmic/endoplasmic reticulum Ca -ATPase; DRP: DNase-resistant particles; HFrEF: HF with

reduced ejection fraction; CVD: Cardiovascular diseases; SDF-1a: stromal cell-derived factor 1; VEGF: Vascular

endothelial growth factor; I-1c: Constitutively active inhibitor-1; vg: Viral genomes; AMI: Acute myocardial infarction;

IDH: Ischemic heart disease; HGF-X7: Hepatocyte growth factor-X7; AV: Adenovirus; Vpu: Viral protein U; HGF:

Hepatocyte growth factor; AID: alpha-interacting domain; ROS: reactive oxygen species; LPL: Lipoprotein lipase;

TG: Triglycerides; GC: Genome copies.

3.6. Intravenous Injection

Intravenous injections are often used for rehydration, nutrition, and therapeutic treatments (for example, blood

transfusion or chemotherapy), as well as to avoid hepatic metabolism . The interest of this route of

administration is the continuous treatment, or regular frequencies, by the installation of a catheter . However,

the lymphatic system is only scarcely involved following IV injections . Table 6 presents several

conditions treated with this type of injection .

Table 6. Intravenous administration of medication as treatment for CVD.

Condition
Intervention and

Identifier
Therapy Target

Stage and

Status
Dose and Outcome

AMI

IHD

VM202RY

(NCT01422772)

(NCT03404024)

DNA

plasmid
HGF-X7

Phase II

(Recruiting)

Single escalating (0.5–3 mg)

doses, administered into

multiple sites

Phase I: improved myocardial

function and wall thickness

MI

Angina

pectoris

AdVEGF-D

(NCT01002430)
AV VEGF-D

Phase I/IIa

(Completed)

Single escalating (1 × 10 –1 ×

10  Vpu) doses, injected into

multiple sites in the

endocardium

Phase 1/IIa: AdVEGF-D

improved myocardial perfusion

reserve in the injected region

MI

Ad-HGF

(NCT02844283)

AV HGF
Phase I/II

(Unknown)

Single dose

Preclinical studies: Ad-HGF

preserved cardiac function,

reduced infarct size, and

improved post-MI cardiac

remodeling ; fractional

repeated dosing significantly

improved cardiac function

compared with single injection

MI L-type Ca

channels’ AID

peptide and

antioxidant molecule

      Reduced the elevated level of

ROS and the intracellular Ca
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Condition
Intervention and

Identifier
Therapy Target

Stage and

Status
Dose and Outcome

(curcumin) in poly

nanoparticles

LPLD

Alipogene tiparvovec

(NCT00891306)

AAV LPL Approved

1 × 10  GC/kg

Phase II/III: reduction in mean

total plasma and chylomicron

TG level 

12

[141]

Condition Intervention and Identifier Therapy Target
Stage and

Status
Dose and Outcome

HTN
NO-releasing

nanoparticles      

Reduction in the mean

arterial blood pressure

HF

Arrhythmia

Digoxin
     

Dose: 0.25 mg once daily

MI

HF

HTN

Arrhythmia

ß-blocker
 

Beta-

adrenergic

receptors
 

Acebutol: 200 mg twice

daily 

HF
Mesoporous silicon vector

(Nanoconstruct)      

Able to internalize,

accumulate, and traffic

within the cardiomyocytes

HF

Combination of

biocompatible magnetic

nanoparticles and low-

frequency magnetic

stimulation

 

Cardio-

myocytes  

Managed the drug

release by controlling the

applied frequencies 

HF

S100A1-loaded

nanoparticles, decorated

with N-acetylglucosamine
     

Regulated Ca  release

and restored contractile

function in the isolated

failing cardiomyocytes

[147]
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Condition Intervention and Identifier Therapy Target
Stage and

Status
Dose and Outcome

HF

Biodegradable

nanoparticles conjugated

with myocyte-targeting

peptide and PDT-enabling

photosensitizer

PDT
Cardio-

myocytes  

Induced cell-specific

death upon application of

laser light, leaving

adjacent and surrounding

cells completely intact

MI

Unfractionated

heparin
     

Anticoagulant

60 IU/kg for initial bolus

12 IU/kg/h for

maintenance 

MI Aspirin
 

Platelets
 

325 mg, then 81 mg per

day 

MI
Human recombinant

VEGF-165      

Significant improvement

in the infarcted zone

perfusion and cardiac

function for up to six

weeks post-MI .

MI
Nanoparticles containing

siRNA      

Anti-inflammatory effect

in the infarcted heart and

reduction of the post-MI

heart failure 

MI
Magnetic nanoparticles-

loaded cells      

Robust improvement in

the left ventricular and

cardiac function 

[151]
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HTN: Hypertension; NO: nitric oxide; HF: Heart failure; MI: Myocardial infarction; PDT: Photodynamic therapy;

VEGF: Vascular endothelial growth factor; PLGA: Poly lactic-co-glycolic acid; AAV: Adeno-associated virus; HoFH:

Homozygous familial hypercholesterolemia; hLDLR: Human low density lipoprotein receptor; TBG: Thyroxine-

binding globulin; LDL-C: low density lipoprotein cholesterol.

3.7. Intraperitoneal Injection

Condition Intervention and Identifier Therapy Target
Stage and

Status
Dose and Outcome

MI

Insulin-like growth factor

electrostatically-

complexed with PLGA

nanoparticles

     

Higher incidence in

preventing

cardiomyocytes’

apoptosis, reducing

infarct size, and

enhancing left ventricular

function 

MI
Pitavastatin in PLGA

nanoparticles      

Cardioprotective effect

against ischemia-

reperfusion injury 

HoFH

AAV8.TBG.HldlR

(NCT02651675)

AAV hLDLR
Phase I/II

(Completed)

Single dose

Preclinical studies:

reduction in total

cholesterol 

Elevated

LDL-C

ALN-PCS02

(NCT01437059)

siRNA PCSK9

Phase I

(Completed)

Single escalating (15 and

400 μg/kg) doses

Phase I: reduction in the

level of circulating

PCSK9 protein and LDL-

C 

[156]
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Intraperitoneal administration, in which therapeutic compounds are injected directly into the peritoneal cavity, is

another attractive approach of the parenteral extravascular strategies. It is used specifically for the local treatment

of peritoneal cavity disorders, e.g., peritoneal malignancies and dialysis. The peritoneal cavity contains the

abdominal organs and the peritoneal fluid, normally composed of water, proteins, electrolytes, immune cells, and

other interstitial fluid substances . The high absorption rate associated to IP administration is promoted by the

vast blood supply to the peritoneal cavity, along with its large surface area, which is further increased by the

microvilli covering the mesothelial layer . Injected compounds can enter the circulatory system after IP injection

via both blood and lymphatic capillaries draining the peritoneal submesothelial layer . Besides, the

peritoneal absorption of molecules is greatly affected by their physicochemical characteristics. This route of

administration also allows for the injection of large volumes (up to 10 mL) . Extensive experimental studies

carried out on animals have revealed that the peritoneal cavity has favorable absorption of lipophilic and unionized

compounds . This type of injection is most exploited for preclinical studies, since it is the simplest to perform,

especially in small animals and with little impact on the animals’ stress . IP use in humans is limited, despite

showing many benefits in previous studies and even being recommended, for certain types of chemotherapy, by

the National Cancer Institute .
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