

# Lymphatic Route in Cardiovascular Medicine

Subjects: **Pharmacology & Pharmacy**

Contributor: Nolwenn Tessier

The lymphatic network is a unidirectional and low-pressure vascular system that is responsible for the absorption of interstitial fluids, molecules, and cells from the peripheral tissue, including the skin and the intestines. Targeting the lymphatic route for drug delivery employing traditional or new technologies and drug formulations is exponentially gaining attention in the quest to avoid the hepatic first-pass effect.

lymphatics

cardiovascular diseases

drug delivery route

nanotechnology

## 1. Introduction

Cardiovascular diseases (CVD) are one of the leading causes of death worldwide [1]. CVD include coronary heart disease, myocardial infarction (MI), heart failure (HF), stroke, and artery diseases [2]. Treatments for cardiovascular diseases are numerous, and the routes of administration are diverse. The chosen drug delivery route is a key determinant of the pharmacodynamics, pharmacokinetics, as well as toxicity of the delivered compounds. Yet, side effects or therapeutic failures are raising concerns, highlighting the need for new administration routes and improved formulation of molecules that reduce their degradation by hepatic metabolism. Drug delivery refers to the methods, approaches, or strategies employed for the transport of pharmaceutical compounds to an organism to achieve a desired therapeutic outcome. With this intent, various routes of administration are used to manage CVD and their risk factors, including parenteral (intravenous (IV), intradermal (ID), intramuscular (IM), subcutaneous (SC), and intraperitoneal (IP)), and transmucosal (oral, nasal, pulmonary, ocular, and genital) and transdermal route [3]. Drug absorption and transport through the lymphatic system makes it possible to avoid hepatic metabolism and is a privileged target in pathologies, such as particular types of cancer (chemotherapeutics [4]) or vaccines [5][6] (HIV [7]), but also for macromolecules [8], and the extensively hepatic-metabolized compounds [9][10].

## 2. Conventional and Novel Therapies to Treat CVD

Historically, small molecules have been used for the treatment of CVD. However, these molecules improve the symptoms and slow down the disease progression without having an actual regenerative effect on the affected tissues or organs [11]. Thus, the remaining unmet clinical needs necessitated the urgent seek for other potential therapeutic options.

Gene therapy is one of the most promising treatment strategies for CVD [12][13][14][15][16], inherited or acquired, through targeting the causative genes engaged in the induction and progression of the disease. It works through replacing defective genes, silencing overexpressed ones or providing functional copies of specific therapeutic

genes, thanks to DNA, RNA (siRNA, microRNA, mRNA), and antisense oligonucleotides (ASO) [17]. Back in the 1950s and 1960s, several attempts were made to directly transfet cells with DNA and RNA. Nevertheless, in vivo studies failed to show a noticeable success. Thus, selecting a suitable vector to deliver gene therapy is as important as selecting the agent itself [18][19]. Generally, vectors can be divided into viral and non-viral. The most commonly used viral vectors are retrovirus (RV), adenovirus (AV), adeno-associated virus (AAV), and lentivirus [20]. The most commonly used non-viral vectors include lipid-based vectors using cationic lipids and polymer-based vectors using cationic polymers [21]. Cationic lipids complex with the genetic materials to form lipoplexes or lipid nanoparticles (LNP), while cationic polymers form polyplexes [22]. In 2012, cardiovascular gene therapy was the third most common application for gene therapy (8.4% of the total gene therapy trials). However, clinically, it is still in the infancy stage, and a lot of effort is yet to be expended to correct the underlying basal molecular mechanisms behind different cardiovascular disorders [23][24].

## 3. Treating CVD through Various Administration Routes

### 3.1. Oral Administration

Among the various routes of administration, the oral route is the most commonly employed. It exhibits many advantages, including pain avoidance, ease of administration, patient compliance, reduced care cost, and low incidence of cross-infection. Furthermore, it is amenable to various types and forms of pharmaceuticals [25] (Table 1). While some drugs are intended to target the gastrointestinal tract (GIT), the majority are employed to exert a systemic therapeutic effect. Nevertheless, the oral bioavailability of most pharmaceutical compounds depends mainly on their solubility, permeability, and stability in the GIT environment [26][27][28].

**Table 1.** Oral delivery of various treatments for CVD.

| Condition | Intervention and Identifier | Target                                                                | Dose and Outcome                                          |
|-----------|-----------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|
| Diabetes  | Metformin                   |                                                                       | From 500 to 850 mg, 2–3 times a day, during the meal [29] |
| Diabetes  | Sulfonylureas               | Dosage is very different from one class of medication to another [30] |                                                           |
|           | Meglitinide                 |                                                                       |                                                           |
| Diabetes  | Acarbose, Miglitol          | Carbohydrate digesting enzymes in the brush border                    | 50 mg three times daily (up to 100 mg) [31]               |

| Condition | Intervention and Identifier                                                               | Target         | Dose and Outcome                                                                                               |
|-----------|-------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------|
|           | Voglibose                                                                                 |                |                                                                                                                |
| Diabetes  | Rosiglitazone                                                                             | PPAR- $\alpha$ | Rosiglitazone: 4 mg per day<br>(up to 8 mg)                                                                    |
|           | Pioglitazone                                                                              |                | Pioglitazone: 15–30 mg per day <sup>[32]</sup>                                                                 |
|           | Sitagliptin                                                                               | DPP4           |                                                                                                                |
| Diabetes  | Vildagliptin                                                                              |                | 2.5–100 mg once daily                                                                                          |
|           | Saxagliptin                                                                               |                | depending on the inhibitor used <sup>[33]</sup>                                                                |
|           | Linagliptin                                                                               |                |                                                                                                                |
|           | Alogliptin                                                                                |                |                                                                                                                |
| Diabetes  | Dapagliflozin                                                                             | SGLT2          | Dapagliflozin: 2.5–10 mg daily                                                                                 |
|           | Canagliflozin                                                                             |                | Canagliflozin: 100–300 mg                                                                                      |
|           | Empagliflozin                                                                             |                | Empagliflozin: 5–25 mg daily <sup>[34]</sup>                                                                   |
| Diabetes  | AG019<br>(NCT03751007) or in combination with the anti-CD3 monoclonal antibody teplizumab |                | 2 or 6 capsules per day for 8 weeks (repeated dose) or for one day (single dose)                               |
|           | Insulin nanocarriers                                                                      |                | Protection of insulin from enzymatic degradation<br><br>Enhancement of stability, intestinal permeability, and |

| Condition | Intervention and Identifier                                                      | Target                               | Dose and Outcome                                                                                                                                  |
|-----------|----------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                  |                                      | bioavailability <a href="#">[17]</a>                                                                                                              |
| Diabetes  | Electrostatically-complexed insulin with partially uncapped cationic liposomes   |                                      | Improved insulin pharmacokinetic profile <a href="#">[35]</a>                                                                                     |
| Diabetes  | Insulin-loaded PLGA                                                              |                                      | Improved bioavailability and sustained hypoglycemic effect <a href="#">[36]</a>                                                                   |
| Diabetes  | Exenatide combined to phase-changeable nanoemulsion with medium-chain fatty acid |                                      | Enhancement of intestinal absorption and lymphatic transport <a href="#">[37]</a>                                                                 |
| HTN       | Prazosine Terazosine Doxazosine                                                  | Alpha-adrenergic receptor            | Prazosine: 3–7.5 mg per day in two doses<br>Terazosine: 1–9 mg per day in the evening at bedtime<br>Doxazosine: 4 mg per day <a href="#">[38]</a> |
| HTN       | Clonidine Methyldopa                                                             | Alpha-adrenergic receptor (agonists) | Clonidine: 0.1 mg twice daily <a href="#">[39]</a><br>Methyldopa: 250 mg two to three times daily <a href="#">[40]</a>                            |
| HTN       | Carvedilol into nanoemulsion                                                     | Beta-adrenergic receptors            | Significant improvement in its absorption, permeability, and bioavailability <a href="#">[41]</a> <a href="#">[42]</a>                            |
| HTN       | Valsartan, Ramipril and Amlodipine into nanoemulsion                             |                                      | Enhanced solubility, oral bioavailability, and                                                                                                    |

| Condition  | Intervention and Identifier          | Target                          | Dose and Outcome                                         |
|------------|--------------------------------------|---------------------------------|----------------------------------------------------------|
|            |                                      |                                 | pharmacological outcome [43]                             |
| HTN        | Felodipine-loaded PLGA nanoparticles | Calcium-channel                 | Sustained drug release both in vitro and ex vivo [44]    |
| MI         |                                      |                                 |                                                          |
| HF         |                                      |                                 |                                                          |
| HTN        | β-blocker                            | Beta-adrenergic receptors       | Acebutol: 200 mg twice daily [45]                        |
| Arrhythmia |                                      |                                 |                                                          |
| MI         |                                      |                                 |                                                          |
| HF         | Conversion enzyme inhibitors         | Conversion enzyme               | Captopril: 100 mg per day [46]                           |
| HTN        |                                      |                                 |                                                          |
| MI         |                                      |                                 |                                                          |
| HF         | Valsartan                            | Angiotensin II                  | 20 mg twice a day, up to 160 mg [47]                     |
| HTN        | Losartan                             |                                 |                                                          |
| HF         | Hydrochlorothiazide                  | Angiotensin/neprilysin receptor | 49 mg/51 mg twice daily and doubled after 2–4 weeks [48] |
| HTN        | Bumetanide                           |                                 |                                                          |
| HF         | Sacubitril                           | Calcium channel                 | 5–10 mg daily [49]                                       |
| HTN        | Valsartan                            |                                 | 60 mg three times daily [50]                             |
| HTN        | Amlodipine                           | Calcium channel                 | 5–10 mg daily [49]                                       |

| Condition  | Intervention and Identifier | Target                            | Dose and Outcome                         |
|------------|-----------------------------|-----------------------------------|------------------------------------------|
| Arrhythmia | Diltiazem                   |                                   | 60 mg three times daily [50]             |
| HF         | Ivabradine                  |                                   | Bradycardic<br>5–7.5 mg twice a day [51] |
| HF         | Eplerenone                  |                                   | 50 mg once a day [52] and                |
| MI         | Spironolactone              | Aldosterone                       | 12.5–25 mg with each intake [53]         |
| HF         | Digoxin                     |                                   | 0.25 mg once daily [54]                  |
| Arrhythmia |                             |                                   |                                          |
| HF         |                             |                                   |                                          |
| MI         | Statin                      | HMG-CoA                           | 10 mg once daily [55]                    |
| HCL        |                             |                                   |                                          |
| MI         | Aspirin                     | Platelets                         | 325 mg, then 81 mg per day [56]          |
|            | Clopidogrel                 |                                   | 300 mg, then 75 mg daily with aspirin    |
| MI         | Prasugrel                   | Platelets                         | 60 mg, then 10 mg daily                  |
|            | Ticagrelor                  |                                   | 180 mg, then 90 mg twice a day [57][58]  |
| HCL        | Ezetimibe                   | Intestinal cholesterol absorption | 10 mg once daily [59]                    |

| Condition  | Intervention and Identifier                                           | Target | Dose and Outcome                                                                                                                                          |
|------------|-----------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| HLD        | Tricor<br>Triglide                                                    |        | Fenofibrates 100–300 mg per day [60]                                                                                                                      |
| HCL<br>HLD | Atorvastatin formulated into ethylcellulose nanoparticles             |        | Enhanced atorvastatin's lymphatic absorption and oral bioavailability [61]                                                                                |
| HCL<br>HLD | Atorvastatin formulated into nanocrystals prepared with poloxamer 188 |        | Improved atorvastatin's gastric solubility and bioavailability [62]<br>Reduced circulating cholesterol, TG and LDL                                        |
| HCL<br>HLD | Atorvastatin formulated into polycaprolactone nanoparticles           |        | Enhanced atorvastatin's bioavailability [63]                                                                                                              |
| HCL<br>HLD | Nanostructured lipid carriers                                         |        | Enhanced atorvastatin bioavailability by 2.1 fold compared to the commercial product: lipitor®<br>Reduced the serum level of cholesterol, TG and LDL [64] |
| HCL<br>HLD | Nanoemulsion                                                          |        | Increased the bioavailability of atorvastatin compared to the commercial tablet ozovas™ [65]                                                              |
| HCL<br>HLD | Simvastatin<br>Rosuvastatin                                           |        | Improved bioavailability via lymphatic uptake [66][67][68][69][70][71][72][73][74]                                                                        |

5. Maisel, K.; Sasso, M.S.; Potin, L.; Swartz, M.A. Exploiting lymphatic vessels for immunomodulation: Rationale, opportunities, and challenges. *Adv. Drug Deliv. Rev.* 2017, 114,

| Condition | Intervention and Identifier | Target | Dose and Outcome |
|-----------|-----------------------------|--------|------------------|
|           | Fluvastatin                 |        |                  |
|           | Fibrates                    |        | know?            |
|           | Ezetimibe                   |        |                  |
|           | lipid-based                 |        | tion. J.         |
|           | nanoparticles               |        | mor              |

10. Yáñez, J.A.; Wang, S.W.; Knemeyer, I.W.; Wirth, M.A.; Alton, K.B. Intestinal lymphatic transport PPARD: drug delivery and gene therapy. *Adv. Drug Deliv. Rev.* **2001**, *63*, 923–942. PPARD: peroxisome proliferator-activated receptor; PPARD: peptidyl peptidase-4; SGLTP2: Sodium glucose co-transporter-2; PLGA: Poly lactic-co-glycolic acid; HTN: Hypertension; MI: Myocardial infarction; HF: Heart failure; HCL: Hypercholesterolemia; HMG-CoA reductase: Hydroxymethyl glutaryl coenzyme A reductase; HLD: Hyperlipidemia; TG: Triglycerides; LDL: Low density lipoprotein.

11. Li, T.; Liang, W.; Xiao, X.; Qian, Y.J. Nanotechnology, an alternative with promising prospects and failure. *HCL: Hypercholesterolemia; HMG-CoA reductase: Hydroxymethyl glutaryl coenzyme A reductase; HLD: Hyperlipidemia; TG: Triglycerides; LDL: Low density lipoprotein.* *Int. J. Nanomed.* **2018**, *13*, 7349.

12. Wong, M.S.; Hawthorne, W.J.; Manolios, N. Gene therapy in diabetes. *Self Nonself* **2010**, *1*, 165–183.

### 3.2 Subcutaneous Injection

13. Phillips, M. Gene therapy for hypertension: Sense and antisense strategies. *Expert Opin. Biol. Ther.* **2001**, *1*, 655–662. Subcutaneous injections can be injected into the dermis, in the inter-tissue space, and slightly before the muscle, mostly in the abdomen or thigh. The injected molecules will, therefore, either be degraded or phagocytized at the site of injection and join the lymphatic system or the bloodstream [75].

14. Tromp, T.R.; Stroes, E.S.; Hovingh, G.K. Gene-based therapy in lipid management: The winding road from promise to practice. *Expert Opin. Investig. Drugs* **2020**, *29*, 483–493.

15. Kierman, J.M.; Myers, M.D.; Duboy, R.; Chen, J.Y.; Feldman, A.M. Current landscape of heart failure gene therapy. *J. Am. Heart Assoc.* **2019**, *8*, e012239.

16. Shiramura, M.; Nakagami, H.; Tanigama, Y.; Morishita, R. Gene therapy for peripheral arterial disease. *Expert Opin. Biol. Ther.* **2014**, *14*, 1175–1194.

| Condition | Intervention and Identifier | Therapy | Target | Stage and Status                   | Dose and Outcome |
|-----------|-----------------------------|---------|--------|------------------------------------|------------------|
| 1         |                             |         |        | Different types of insulin         | ent of           |
| 1         | Diabetes                    | Insulin |        | At least 3 injections per day      | 9, 137–          |
| 2         |                             |         |        | Dosage adapted to the patient [76] | isease. therapy  |

landscape. *Signal Transduct. Target. Ther.* **2021**, *6*, 1–24.

| Condition | Intervention and Identifier | Therapy                                                | Target                                                 | Stage and Status | Dose and Outcome                                                                                                                                                                          | Reference |
|-----------|-----------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|           |                             |                                                        |                                                        |                  | GLP-1 analogues [77]                                                                                                                                                                      |           |
|           |                             |                                                        |                                                        |                  | Exenatide: 5–10 µg twice a day                                                                                                                                                            |           |
|           |                             | Exenatide                                              |                                                        |                  |                                                                                                                                                                                           |           |
|           |                             |                                                        |                                                        |                  | Lixisenatide: 10–20 µg once daily                                                                                                                                                         |           |
|           |                             |                                                        |                                                        |                  |                                                                                                                                                                                           |           |
|           |                             | Lixisenatide                                           |                                                        |                  |                                                                                                                                                                                           |           |
|           |                             |                                                        |                                                        |                  | Liraglutide: 0.6–1.8 mg once daily                                                                                                                                                        |           |
|           |                             |                                                        |                                                        |                  |                                                                                                                                                                                           |           |
|           |                             | Liraglutide                                            |                                                        |                  |                                                                                                                                                                                           |           |
| Diabetes  |                             |                                                        |                                                        |                  |                                                                                                                                                                                           |           |
|           |                             | Exenatide LAR                                          |                                                        |                  | Exenatide LAR: 2 mg once a week                                                                                                                                                           |           |
|           |                             |                                                        |                                                        |                  |                                                                                                                                                                                           |           |
|           |                             | Albiglutide                                            |                                                        |                  | Albiglutide: 30–50 mg once a week                                                                                                                                                         |           |
|           |                             |                                                        |                                                        |                  |                                                                                                                                                                                           |           |
|           |                             | Dulaglutide                                            |                                                        |                  | Dulaglutide: 0.75–1.5 mg once a week                                                                                                                                                      |           |
|           |                             |                                                        |                                                        |                  |                                                                                                                                                                                           |           |
|           |                             |                                                        |                                                        |                  | Three doses—10 µg                                                                                                                                                                         |           |
|           |                             |                                                        |                                                        |                  |                                                                                                                                                                                           |           |
|           |                             |                                                        |                                                        |                  | Strong immune response against these aggregates and restored insulin                                                                                                                      |           |
|           |                             |                                                        |                                                        |                  |                                                                                                                                                                                           |           |
|           |                             | Vaccine formed of virus-like particles coupled to IAPP | Against the insoluble IAPP- derived amyloid aggregates |                  | Diminished the amyloid deposits in the pancreatic islets, reduced the level of the pro-inflammatory cytokine IL-1 $\beta$ , and reprieved the onset of amyloid-induced hyperglycemia [78] |           |
|           |                             |                                                        |                                                        |                  |                                                                                                                                                                                           |           |

34. Neuen, B.L.; Cherney, D.Z.; Jardine, M.J.; Perkovic, V. Sodium-glucose cotransporter inhibitors in type 2 diabetes: Thinking beyond glucose lowering. *CMAJ* 2019, 191, E1128–E1135.

| Condition | Intervention and Identifier          | Therapy                  | Target                            | Stage and Status | Dose and Outcome                                                                                                                                                                                                                                                                                      | Reference and<br>Year                      |
|-----------|--------------------------------------|--------------------------|-----------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Diabetes  | IL-1 $\beta$ epitope peptide         |                          | Against IL-1 $\beta$              | Phase 2          | Three doses—50 $\mu$ g<br>Enhanced glucose tolerance, improved insulin sensitivity, restored $\beta$ -cell mass, reduced $\beta$ -cell apoptosis, and enhanced $\beta$ -cell proliferation, as well as downregulation of IL-1 $\beta$ expression and inhibition of the inflammatory activity [79][80] | Le et al. 2018, 15, 337.                   |
| Diabetes  | hIL1bQb                              | vaccine<br>(NCT00924105) | Against IL-1 $\beta$              | Phase 1          | Six doses—300 $\mu$ g<br>Mediated a dose-dependent IL-1 $\beta$ -specific antibody response<br>More studies are required to precisely investigate the clinical efficiency of this vaccine [81]                                                                                                        | Winkman, et al. 2013. J. Med. 33: 383-390. |
| Diabetes  | Neutralizing antibodies against DPP4 |                          | The GLP-1 and GIP inhibitor, DPP4 | Phase 2          | Five doses—2–20 $\mu$ g<br>Increased pancreatic and plasma insulin level and improved postprandial blood glucose level [82]                                                                                                                                                                           | Le et al. 2018, 15, 338.                   |

outpatients with and without coronary artery disease. JAMA 2012, 308, 1340–1349.

46. Lazar, H.L. Role of angiotensin-converting enzyme inhibitors in the coronary artery bypass patient. Ann. Thorac. Surg. 2005, 79, 1081–1089.

| Condition | Intervention and Identifier     | Therapy | Target                                    | Stage and Status | Dose and Outcome                                                                                         |
|-----------|---------------------------------|---------|-------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------|
| HTN       | hR32 vaccine                    |         | Renin-derived peptide                     |                  | Five doses—500 µg<br>Reduced systolic blood pressure by 15 mmHg [83]                                     |
| HTN       | Angiotensin I vaccine (PMD3117) |         |                                           |                  | Three or four doses—100 µg<br>The vaccine failed to reduce the blood pressure [84]                       |
| HTN       | AngI-R vaccine                  |         | Modified endogenous angiotensin I peptide |                  | Four doses—50 µg<br>15 mmHg reduction in systolic blood pressure and reduced angiotensin I/II level [85] |
| HTN       | ATRQβ-001                       |         | Angiotensin II type I receptors           |                  | Two doses—100 µg<br>Protective role against target organ damage induced by hypertension [86]             |
| HTN       | ATR12181 vaccine                |         | Angiotensin II type I receptors           |                  | Nine doses—0.1 mg<br>Attenuated the development of hemodynamic                                           |

59. VAVIUKIS, M., VAVIUKIS, A. Adding ezetimibe to statin therapy. Latest evidence and clinical implications. *Drugs Context* 2018, 7, 212534.

| Condition | Intervention and Identifier                                                        | Therapy | Target                 | Stage and Status | Dose and Outcome                                                                    | lipid                               |
|-----------|------------------------------------------------------------------------------------|---------|------------------------|------------------|-------------------------------------------------------------------------------------|-------------------------------------|
| HTN       | CYT006-AngQb vaccine                                                               |         | Against angiotensin II |                  | alterations of hypertension [87]                                                    | n oral 77.                          |
| HF        | Ang II-KLH vaccine                                                                 |         | Angiotensin II         |                  | 100 or 300 µg                                                                       | n SC Adv.                           |
| HTN       |                                                                                    |         |                        |                  | Reduction in blood pressure and reduced ambulatory daytime blood pressure [88]      | atin-<br>s. Drug                    |
| MI        | Celecoxib loaded in nanoparticles                                                  |         |                        |                  | Three doses—5 µg                                                                    | astatin , 18.                       |
| MI        | Chitosan-hyaluronic acid based hydrogel containing deferoxamine-PLGA nanoparticles |         |                        |                  | Promoted vascularization in the ischemic myocardium and delayed HF progression [90] | statin: n. 2011, calcium via oparm. |
| MI        |                                                                                    |         |                        |                  |                                                                                     | poorly 09, 376, self-<br>ability of |
| HCL       | Alirocumab                                                                         |         | PCSK9                  |                  | One dose every two weeks [92][93]                                                   | id                                  |

72. Agarwal, T.O., Mandhani, U.B., Agarwal, V.V., Mandhani, M.S., Mandhani, H.S., Sharma, C., Ojha, S.; Patil, C.R.; Goyal, S.N. Ezetimibe-Loaded Nanostructured Lipid Carrier Based Formulation

| Condition                                                                                                                                                 | Intervention and Identifier | Therapy                        | Target | Stage and Status | Dose and Outcome                             | 26,                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|--------|------------------|----------------------------------------------|-------------------------------------------------------------------|
| 7                                                                                                                                                         | Evolocumab                  |                                |        |                  |                                              | timibe<br>olloids                                                 |
| 7                                                                                                                                                         | HCL                         | Inclisiran                     |        | PCSK9            | Two doses per year [94]                      | ral                                                               |
| 7                                                                                                                                                         | HoFH                        | Mipomersen<br>(NCT00607373)    |        |                  | 200 mg once/week.                            | the                                                               |
| 7                                                                                                                                                         | HeFH                        | (NCT00706849)                  | ASO    | ApoB             | Approved                                     | Phase III: reduction in                                           |
| 7                                                                                                                                                         | severe<br>HCL               | (NCT00770146)                  |        |                  | LDL-C [95]                                   | Care in<br>ctr.                                                   |
| 7                                                                                                                                                         |                             | (NCT00794664)                  |        |                  |                                              |                                                                   |
| 7                                                                                                                                                         |                             | Inclisiran                     |        |                  | 284 mg inclisiran,<br>injected on day 1, day | Knuth,<br>n                                                       |
| 7                                                                                                                                                         | ASCVD<br>HCL                | (NCT03399370)                  | siRNA  | PCSK9            | 90 and then twice/year                       | t IL-1 $\beta$                                                    |
| 8                                                                                                                                                         | HeFH                        | (NCT03400800)                  |        |                  | Phase III: reduction in                      | .                                                                 |
| 8                                                                                                                                                         |                             | (NCT03397121)                  |        |                  | LDL-C level [94][96]                         | nodeL.                                                            |
| 8                                                                                                                                                         | FCS                         | Volanesorsen<br>(NCT02211209)  | ASO    | ApoC3            | 300 mg once/week                             | Maurer,<br>e 2                                                    |
| 8                                                                                                                                                         | Elevated<br>LP(a)           | ISIS-APO(a)Rx<br>(NCT02160899) | ASO    | APO(a)           | Approved                                     | Phase III: reduction in<br>mean plasma APOC3<br>and TG level [97] |
| 8                                                                                                                                                         |                             |                                |        |                  |                                              | Ira, M.;<br>se                                                    |
| 8                                                                                                                                                         |                             |                                |        |                  |                                              | oS ONE                                                            |
| 8                                                                                                                                                         |                             |                                |        |                  |                                              | ed                                                                |
| A double-blind, placebo-controlled study of an angiotensin immunotherapeutic vaccine (PRIVD3117) in hypertensive subjects. Clin. Sci. 2004, 107, 167–173. |                             |                                |        |                  |                                              |                                                                   |

| Condition      | Intervention and Identifier           | Therapy                | Target  | Stage and Status                   | Dose and Outcome                                                   | for                                                      |
|----------------|---------------------------------------|------------------------|---------|------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|
| Elevated LP(a) | AKCEA-APO(a)-LRx (NCT03070782)        | GalNAc3 conjugated-ASO | APO(a)  | Phase III (Recruiting)             | 80 mg administered monthly                                         | Phase I/II: reduction in plasma Lp(a) concentration [98] |
| CVD            | (NCT02414594)                         |                        |         |                                    |                                                                    | on from ts. Cell. tocker, 1gQb on ly.                    |
|                | (NCT04023552)                         |                        |         |                                    |                                                                    |                                                          |
| HTG            | AKCEA-APOCIII-LRx (NCT02900027)       | GalNAc3 conjugated-ASO | APOC3   | Phase III (Recruiting)             | Multiple dosing injected as once/4 weeks for up to 49 weeks        | n II 920. utic                                           |
| CVD            | (NCT03385239)                         |                        |         |                                    |                                                                    |                                                          |
| FCS            | (NCT04568434)                         |                        |         |                                    |                                                                    | kumar, rogel for                                         |
| HTG            | Vupanorsen (NCT02709850)              | ASO                    | ANGPTL3 | Phase IIb (Active, Not recruiting) | Multiple escalating dosing (60–160 mg, once/2 or 4 weeks)          | l.; inhibitor.                                           |
| FH             | (NCT04459767)                         |                        |         |                                    |                                                                    |                                                          |
| HLP            | (NCT04516291)                         |                        |         |                                    |                                                                    | dson, ated                                               |
| HCL            | Neutralizing antibodies against PCSK9 |                        | PCSK9   |                                    | Three doses—5–50 µg                                                |                                                          |
|                |                                       |                        |         |                                    | Long-lasting reduction in the level of total cholesterol, VLDL and | , S. ) in thromb.                                        |

96. Raal, F.J.; Kallend, D.; Ray, K.K.; Turner, T.; Koenig, W.; Wright, R.S.; Wijngaard, P.L.; Curcio, D.; Jaros, M.J.; Leiter, L.A. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. *N. Engl. J. Med.* 2020, 382, 1520–1530.

107. Hirano, K.; Hunt, C.A. Lymphatic transport of liposome-encapsulated agents: Effects of liposome size following intraperitoneal administration. *J. Pharm. Sci.* 1985, 74, 915–921.

1081 Flessner M; Bedard R; Sarni J. Exchange of peptide-DNA molecules between peritoneal cavity-dependent and atrial natriuretic polypeptide heart. *Arch Hypertension Res* 1985; 24(8):154-155. MI: Myocardial infarction; HCL:

109. Lim, H.Y.; Thiam, C.H.; Yeo, K.P.; Bisoendial, R.; Hii, C.S.; McGrath, K.C.; Tan, K.W.; Heather, A.; hypercholesterolemia; AngII-KLH: Angiotensin II—keyhole-limpet hemocyanin; PCSK9: Proprotein convertase Alexander, J.S.J.; Angeli, V. Lymphatic vessels are essential for the removal of cholesterol from subtilisin/kexin type 9; ASO: Antisense oligonucleotides; ApoB: Apolipoprotein B; LDL-C: low density lipoprotein cholesterol; ASCVD: Atherosclerotic cardiovascular disease; FCS: Familial chylomicronemia syndrome; TG: triglycerides. *Cell Metab.* 2013, **17**, 671–684.

110 Reddy, S. T.; Pachori, A.; Schepel, H.; Gopinath, J. A.; Swaroop, M. Cardiovascular targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. *J Control Release*. 2006; 112, 26–34. Hyperlipidemia; ANGPTL3: Angiopoietin-like proteins 3; VLDL: Very low density lipoprotein; LPL: Lipoprotein lipase.

111. Thrower, S.L.; James, L.; Hall, W.; Green, K.M.; Arif, S.; Allen, J.S.; Van-Krinks, C.; Lozanoska-Ochser, B.; Marquesini, L.; Brown, S.; et al. Proinsulin peptide immunotherapy in type 1 diabetes: 3.3. **Intradermal Injection** Report of a first-in-man Phase I safety study. *Clin. Exp. Immunol.* 2009, 155, 156–165.

112. Dul, M.; Nikolic, T.; Stefanidou, M.; McAteer, M.; Williams, P.; Mous, J.; Roep, B.; Kochba, E.; Levin, Y.; Peakman, M. Conjugation of a peptide autoantigen to gold nanoparticles for initial LV is exclusively composed of LECs with button-like junctions [104], leading to capillaries that have inter-intradermally administered antigen specific immunotherapy. *Int. J. Pharm.* 2019, 562, 303–312.

113. Nikolic, T.; Zwaginga, J.J.; Uitdehaag, B.M.; Woittiez, N.J.; de Koning, E.J.; Aanstoot, H.J.; Roep, B.O. Safety and feasibility of intradermal injection with tolerogenic dendritic cells pulsed with medium-sized macromolecules (up to 10 kDa) [106] are mainly transported away from the interstitial spaces by blood capillaries, thanks to mass transport [108]. In contrast, lymphatic access of large particles with diameters exceeding 100 nm is hindered by their restricted movement through the interstitium, via diffusion and convection [4].

114. Nicoll, L.H.; Nesby, A. Intramuscular injection: An integrative research review and guideline for evidence-based practice? *Appl. Nurs. Res.* 2002; 15, 149–162.

115. Nakajima, Y.; Mukai, K.; Takaoka, K.; Hirose, T.; Morishita, K.; Yamamoto, T.; Yoshida, Y.; Urai, T.; Nakatani, T. Establishing a new appropriate intramuscular injection site in the deltoid muscle. *Hum. Vaccin. Immunother.* 2017; 13, 2123–2129.

Table 3 presents several vaccines used for diabetes through intradermal injection [111][112][113].

116. Ogston-Tuck, S. Intramuscular injection technique: An evidence-based approach. *Nurs. Stand.*

Table 3. Intradermal administration as treatment for diabetes. 2014, 29, 52–59.

| 11 | Condition | Intervention and Identifier                                                                                                                                                           | Target      | Dose and Outcome                                                                                                                                                                                                                                  | the            |
|----|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 11 | Diabetes  | Proinsulin peptide vaccine C19-A3                                                                                                                                                     | CD4 T cells | Three equal doses—10–100 µg<br>Vaccine was well tolerated [111]                                                                                                                                                                                   | growth hem.    |
| 11 |           |                                                                                                                                                                                       |             | Three doses—10 µg                                                                                                                                                                                                                                 | ier.           |
| 12 | Diabetes  | C19-A3<br>(NCT02837094)                                                                                                                                                               | CD4 T cells | In vitro and ex vivo studies of in human skin reported rapid diffusion of the injected particles through the skin layers and preferential uptake by Langerhans cells in the epidermis, which have a primary role in the tolerance mechanism [112] | ite<br>planned |
| 12 | 12.       | VIACHOPPOULOS, C.V.; TERENIUS-TRINIOS, D.G.; AZHADOUNIS, K.A.; PLEIN, P.G.; STERIAUDIS, C.I.                                                                                          |             |                                                                                                                                                                                                                                                   |                |
|    |           | Association between pneumococcal vaccination and cardiovascular outcomes: A systematic review and meta-analysis of cohort studies. <i>Eur. J. Prev. Cardiol.</i> 2015, 22, 1185–1199. |             |                                                                                                                                                                                                                                                   |                |

| 12 | Condition | Intervention and Identifier      | Target                 | Dose and Outcome                                                                         | 2012, aling of    |
|----|-----------|----------------------------------|------------------------|------------------------------------------------------------------------------------------|-------------------|
| 12 | Diabetes  | PIpepTolDC vaccine (NCT04590872) | Tolerogenic DC Vaccine | One dose and another after 28 days                                                       | D.; of gene lind. |
| 12 |           |                                  |                        | No results yet, but, it is believed to be able to produce proinsulin-specific Treg [113] | injection         |

allows a rapid absorption and prolonged action. The medication would enter the bloodstream directly and, thus, allow the "bypass" of the hepatic metabolism. It is mainly used for the administration of vaccines [114] (hepatitis, flu virus, tetanus) or with specific pathologies, such as rheumatoid arthritis and multiple sclerosis. It is frequently performed in the upper arm [115] but also in the hip or thigh [116]. It is possible to administer up to 5 mL via this route, based on the site of injection [117]. As lymphatic vessels are present in the skeletal muscle and the connective tissue [118], this leads to the assumption the lymphatic system might be involved in the drug absorption following intramuscular administration. As presented in Table 4, several conditions are treated with this type of gene therapy in cardiac disease (CUPID) a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca<sup>2+</sup>-ATPase in patients with advanced heart failure. Circulation 2011, 124, 304–313.

**Table 4:** CVD therapies using intramuscular administration.

| 128 | Condition | Intervention and Identifier        | Target                 | Dose and Outcome                                                                      |                          |
|-----|-----------|------------------------------------|------------------------|---------------------------------------------------------------------------------------|--------------------------|
| 12  | Diabetes  | Preproinsulin-encoding plasmid DNA | Pancreatic islets      | 40% higher survival rate as compared to the control group [119]                       | 1541. base I             |
| 13  | HTN       | CoVaccine HT (NCT00702221)         | Against angiotensin II | Three doses<br>Terminated in 2016 due to dose-limiting adverse effects                | 2020. s-six- eutic- otic |
| 13  | HTN       | AGMG0201 vaccine                   | Against angiotensin II | High or low dose (0.2 mg plasmid DNA and 0.5 or 0.25 mg Ang II-KLH conjugate) Ongoing | 3, 1. K.H.; g the        |
| 13  | ACS       | Inactivated influenza vaccine      |                        | Less frequent hospitalization from ACS, hospitalization from HF and stroke [120]      | art J.                   |
|     | HF        |                                    |                        |                                                                                       | C-HF                     |
|     | CVD       |                                    |                        |                                                                                       | Failure.                 |

2014. Available online: <https://www.prnewswire.com/news-releases/juventas-therapeutics->

| Condition | Intervention and Identifier | Target | Dose and Outcome                                                   |
|-----------|-----------------------------|--------|--------------------------------------------------------------------|
| MI        | Influenza vaccine           |        | Risk of cardiovascular-related death was significantly lower [121] |
| CVD       | Pneumococcal vaccines       |        | Reduced incidence of cardiovascular events and mortality           |
| MI        |                             |        | Reduced risk of MI in the elderly [122]                            |
| MI        | Influenza vaccine           |        | The primary endpoints: death, new MI and stent thrombosis          |
| HF        | (NCT02831608)               |        | Secondary endpoints: patients with hospitalization for HF          |
| Stroke    |                             |        |                                                                    |

137. Hartikainen, J.; Hassinen, I.; Hedman, A.; Kivelä, A.; Saraste, A.; Knuuti, J.; Husso, M.; Mussalo, H.; Hedman, M.; Rissanen, T.T.; et al. Adenoviral intramyocardial VEGF-D $\Delta$ N $\Delta$ C gene transfer increases myocardial perfusion reserve in refractory angina patients: A phase I/IIa study with 1-year follow-up. *Eur. Heart J.* 2017, 38, 2547–2555.

133. **3.5. Intramyocardial Injection**, Y. Ad-HGF improves the cardiac remodeling of rat following myocardial infarction by upregulating autophagy and necroptosis and inhibiting apoptosis. Am. J. Direct intramyocardial injection is the most effective and commonly used way for gene delivery to the heart owing Transl. Res. 2016, 8, 4605. to its ability to achieve a high concentration of the injected compound at the injection site [123]. It is a preferential route to directly target lymphatic vessels due to their high density in the myocardium [104,124]. Various CVD and their treatments via intramyocardial injection are presented in Table 5 [125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141]. Comparison of single and repeated injections. Hum. Gene Ther. 2016, 27, 643–

**Table 5.** Use of intramyocardial injections in several therapies targeting CVD.

140. Hardy, N.; Viola, H.M.; Johnstone, V.P.; Clemons, T.D.; Cserne Szappanos, H.; Singh, R.; Smith,

| Condition | Intervention and Identifier | Therapy | Target | Stage and Status          | Dose and Outcome                                                                  | Peptide perfusion |
|-----------|-----------------------------|---------|--------|---------------------------|-----------------------------------------------------------------------------------|-------------------|
| 14 HF     | Ad5.hAC6<br>(NCT007)        | Ad5     | AC6    | Phase I/II<br>(Completed) | Single administration of escalating doses ( $3.2 \times 10^9$ vp to $10^{12}$ vp) | Twisk, ial 97,    |

| Condition | Intervention and Identifier | Therapy | Target  | Stage and Status          | Dose and Outcome                                                                                                                                                                  | he<br>ad                       |
|-----------|-----------------------------|---------|---------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| HF        | Ad5.hAC6<br>(NCT03360448)   | Ad5     | AC6     | Phase II<br>(withdrawn)   | Phase II: Reduced HF admission rate. Enhanced left ventricular function beyond the optimal HF therapy following a single administration [126]                                     | ;                              |
| HF        | MYDICAR<br>(NCT00454818)    | AAV1    | SERCA2a | Phase III<br>(withdrawn)  | Phase III: withdrawn for re-evaluation                                                                                                                                            | may<br>nd                      |
| HF        | MYDICAR<br>(NCT01643330)    | AAV1    | SERCA2a | Phase I/II<br>(Completed) | Single administration of escalating doses ( $1.4 \times 10^{11}$ – $1 \times 10^{13}$ DRP of AAV1/SERCA2a)                                                                        | askis,<br>n is<br>lease        |
| HF        | MYDICAR<br>(NCT01966887)    | AAVI    | SERCA2a | Phase IIb<br>(completed)  | Phase I/II (CUPID): high-dose treatment resulted in increased time and reduced frequency of cardiovascular events within a year and reduced cardiovascular hospitalizations [127] | 49,<br>ruz-<br>failing<br>ail. |
| HF        | MYDICAR<br>(NCT01966887)    | AAVI    | SERCA2a | Phase II<br>(Terminated)  | Single infusion of $1 \times 10^{13}$ DRP of AAV1/SERCA2a                                                                                                                         | ullo, P.;<br>judic             |
| HF        | MYDICAR<br>(NCT01966887)    | AAVI    | SERCA2a | Phase II<br>(Terminated)  | Phase IIb (CUPID-2b): no improvement was observed at the tested dose in patients with HF during the follow-up period [125]                                                        | 15,<br>;                       |
| HF        | MYDICAR<br>(NCT01966887)    | AAVI    | SERCA2a | Phase II<br>(Terminated)  | $1 \times 10^{13}$ DRP of AAV1/SERCA2a as a single intracoronary infusion                                                                                                         | 04–                            |

152. Onwordi, E.N.; Gamal, A.; Zaman, A. Anticoagulant Therapy for Acute Coronary Syndromes. *Interv. Cardiol.* 2018, 13, 87–92.

| Condition | Intervention and Identifier | Therapy                     | Target                             | Stage and Status                    | Dose and Outcome                                                                                                                        | EGF<br>pism of       |
|-----------|-----------------------------|-----------------------------|------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 15        |                             |                             |                                    |                                     |                                                                                                                                         |                      |
| 15        |                             |                             |                                    |                                     | Phase II: no improvement observed in the ventricular remodeling. The study terminated driven by the CUPID-2 trial neutral outcome [128] | R.;<br>infarct       |
| 15        |                             |                             |                                    |                                     |                                                                                                                                         | cardial<br>s         |
| 15        |                             |                             |                                    |                                     | Single administration of 3 × 10 <sup>13</sup> vg                                                                                        |                      |
| 15        | HF                          | SRD-001<br>(NCT04703842)    | AAVI                               | SERCA2a<br>(Active, not recruiting) | CUPID-3: aims to investigate the safety and efficacy of SRD-001 in anti-AAV1 neutralizing antibody-negative subjects with HFrEF         | Lai, J.J.;<br>acute  |
| 15        |                             |                             |                                    |                                     |                                                                                                                                         | ama, R.;<br>erfusion |
| 15        |                             |                             |                                    |                                     |                                                                                                                                         | 2015,                |
| 15        | HF                          | INXXN-4001<br>(NCT03409627) | Non-viral, triple effector plasmid | SDF-1α, S100A1, VEGF-165            | Single 80 mg dose, given in 40 mL or 80 mL at a rate of 20 mL/min                                                                       | , J.M.;<br>of        |
| 15        | CVD                         |                             |                                    | Phase I<br>(Completed)              | Phase I: an improvement in the quality of life in 50% of patients was reported [129]                                                    | familial             |
| 15        |                             |                             |                                    |                                     |                                                                                                                                         | nclinical<br>e model |
| 16        | HF                          | ACRX-100<br>(NCT01082094)   | Plasmid DNA                        | SDF-1<br>(Completed)                | Single escalating doses, injected at multiple sites                                                                                     | 8.<br>;              |
| 16        |                             |                             |                                    |                                     | Preclinical studies: enhanced vasculogenesis and improved cardiac function reported with all doses [130]                                | A<br>) and<br>nd,    |
| 16        | HF                          | JVS-100                     | Plasmid DNA                        | SDF-1                               | Phase II                                                                                                                                | Abdom.               |
| 16        |                             |                             |                                    |                                     | Single injection of escalating doses (15 and 30 mg)                                                                                     | Should               |

it Be Used in Experimental Animal Studies? Pharm. Res. 2020, 37, 12.

| Condition | Intervention and Identifier               | Therapy     | Target    | Stage and Status                      | Dose and Outcome                                                                                                                                                                                                                                                             | Normal                              |
|-----------|-------------------------------------------|-------------|-----------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|           | (NCT01643590)                             |             |           | (Completed)                           | Phase II (STOP-HF): JVS-100 showed potential to improve cardiac function through reducing left ventricular remodeling and improving ejection fraction [131]                                                                                                                  | J.H.;<br>rily<br>ties.              |
| HF        | JVS-100<br>(NCT01961726)                  | Plasmid DNA | SDF-1     | Phase I/II<br>(Unknown)               | Single injection of escalating doses (30 and 45 mg)<br>Phase I (RETRO-HF): JVS-100 showed promising signs of clinical efficacy [132]                                                                                                                                         | emory<br>011, 50,<br>W.;<br>age III |
| HF        | AZD8601<br>(NCT02935712)<br>(NCT03370887) | mRNA        | VEGF-A165 | Phase IIa<br>(Active, not recruiting) | Single injection of escalating doses (3 mg and 30 mg)<br>Preclinical studies: promoted angiogenesis, improved cardiac function and enhanced survival were reported [133]<br>Phase I: ID injection of AZD8601 was well tolerated and enhanced the basal skin blood flow [134] | J.;<br>I. J.<br>or                  |
| HF        | NAN-101<br>(NCT04179643)                  | AAV         | I-1c      | Phase I<br>(Recruiting)               | Single escalating doses (3 × 10 <sup>13</sup> vg–3 × 10 <sup>14</sup> vg) of NAN-101<br>Preclinical studies: enhancement in left ventricular ejection fraction and improved cardiac performance [135]                                                                        |                                     |

| Condition             | Intervention and Identifier                                            | Therapy     | Target | Stage and Status           | Dose and Outcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------|------------------------------------------------------------------------|-------------|--------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMI<br>IHD            | VM202RY<br>(NCT01422772)<br>(NCT03404024)                              | DNA plasmid | HGF-X7 | Phase II<br>(Recruiting)   | Single escalating (0.5–3 mg) doses, administered into multiple sites<br>Phase I: improved myocardial function and wall thickness<br><a href="#">[136]</a> <a href="#">[137]</a>                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MI<br>Angina pectoris | AdVEGF-D<br>(NCT01002430)                                              | AV          | VEGF-D | Phase I/IIa<br>(Completed) | Single escalating ( $1 \times 10^9$ – $1 \times 10^{11}$ Vpu) doses, injected into multiple sites in the endocardium<br>Phase 1/IIa: AdVEGF-D improved myocardial perfusion reserve in the injected region<br><a href="#">[137]</a>                                                                                                                                                                                                                                                                                                                                                                      |
| MI                    | Ad-HGF<br>(NCT02844283)                                                | AV          | HGF    | Phase I/II<br>(Unknown)    | Single dose<br>Preclinical studies: Ad-HGF preserved cardiac function, reduced infarct size, and improved post-MI cardiac remodeling <a href="#">[138]</a> ; fractional repeated dosing significantly improved cardiac function compared with single injection<br><a href="#">[139]</a>                                                                                                                                                                                                                                                                                                                  |
| MI                    | L-type $\text{Ca}^{2+}$ channels' AID peptide and antioxidant molecule |             |        |                            | Reduced the elevated level of ROS and the intracellular $\text{Ca}^{2+}$ <a href="#">[142]</a><br><a href="#">[143]</a><br><a href="#">[144]</a> <a href="#">[145]</a> <a href="#">[146]</a> <a href="#">[140]</a><br><a href="#">[45]</a> <a href="#">[54]</a> <a href="#">[56]</a> <a href="#">[147]</a> <a href="#">[148]</a> <a href="#">[149]</a> <a href="#">[150]</a> <a href="#">[151]</a> <a href="#">[152]</a> <a href="#">[153]</a> <a href="#">[154]</a> <a href="#">[155]</a> <a href="#">[156]</a> <a href="#">[157]</a> <a href="#">[158]</a> <a href="#">[159]</a> <a href="#">[160]</a> |

**Table 6.** Intravenous administration of medication as treatment for CVD.

| Condition               | Intervention and Identifier                                                                | Therapy | Target                    | Stage and Status | Dose and Outcome                                                                                                  |
|-------------------------|--------------------------------------------------------------------------------------------|---------|---------------------------|------------------|-------------------------------------------------------------------------------------------------------------------|
| HTN                     | NO-releasing nanoparticles                                                                 |         |                           |                  | Reduction in the mean arterial blood pressure [147]                                                               |
| HF<br>Arrhythmia        | Digoxin                                                                                    |         |                           |                  | Dose: 0.25 mg once daily [54]                                                                                     |
| MI                      |                                                                                            |         |                           |                  |                                                                                                                   |
| HF<br>HTN<br>Arrhythmia | β-blocker                                                                                  |         | Beta-adrenergic receptors |                  | Acebutol: 200 mg twice daily [45]                                                                                 |
| HF                      | Mesoporous silicon vector (Nanoconstruct)                                                  |         |                           |                  | Able to internalize, accumulate, and traffic within the cardiomyocytes [148]                                      |
| HF                      | Combination of biocompatible magnetic nanoparticles and low-frequency magnetic stimulation |         | Cardio-myocytes           |                  | Managed the drug release by controlling the applied frequencies [149]                                             |
| HF                      | S100A1-loaded nanoparticles, decorated with N-acetylglucosamine                            |         |                           |                  | Regulated $\text{Ca}^{2+}$ release and restored contractile function in the isolated failing cardiomyocytes [150] |

| Condition | Intervention and Identifier                                                                            | Therapy | Target          | Stage and Status | Dose and Outcome                                                                                                                            |
|-----------|--------------------------------------------------------------------------------------------------------|---------|-----------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| HF        | Biodegradable nanoparticles conjugated with myocyte-targeting peptide and PDT-enabling photosensitizer | PDT     | Cardio-myocytes |                  | Induced cell-specific death upon application of laser light, leaving adjacent and surrounding cells completely intact <a href="#">[151]</a> |
| MI        | Unfractionated heparin                                                                                 |         |                 |                  | Anticoagulant<br>60 IU/kg for initial bolus<br>12 IU/kg/h for maintenance <a href="#">[152]</a>                                             |
| MI        | Aspirin                                                                                                |         | Platelets       |                  | 325 mg, then 81 mg per day <a href="#">[56]</a>                                                                                             |
| MI        | Human recombinant VEGF-165                                                                             |         |                 |                  | Significant improvement in the infarcted zone perfusion and cardiac function for up to six weeks post-MI <a href="#">[153]</a> .            |
| MI        | Nanoparticles containing siRNA                                                                         |         |                 |                  | Anti-inflammatory effect in the infarcted heart and reduction of the post-MI heart failure <a href="#">[154]</a>                            |
| MI        | Magnetic nanoparticles-loaded cells                                                                    |         |                 |                  | Robust improvement in the left ventricular and cardiac function <a href="#">[155]</a>                                                       |

| Condition      | Intervention and Identifier                                                    | Therapy | Target | Stage and Status          | Dose and Outcome                                                                                                                               |
|----------------|--------------------------------------------------------------------------------|---------|--------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| MI             | Insulin-like growth factor electrostatically-complexed with PLGA nanoparticles |         |        |                           | Higher incidence in preventing cardiomyocytes' apoptosis, reducing infarct size, and enhancing left ventricular function <a href="#">[156]</a> |
| MI             | Pitavastatin in PLGA nanoparticles                                             |         |        |                           | Cardioprotective effect against ischemia-reperfusion injury <a href="#">[157]</a>                                                              |
| HoFH           | AAV8.TBG.HdLR<br>(NCT02651675)                                                 | AAV     | hLDLR  | Phase I/II<br>(Completed) | Single dose<br>Preclinical studies: reduction in total cholesterol <a href="#">[158]</a> <a href="#">[159]</a>                                 |
| Elevated LDL-C | ALN-PCS02<br>(NCT01437059)                                                     | siRNA   | PCSK9  | Phase I<br>(Completed)    | Single escalating (15 and 400 µg/kg) doses<br>Phase I: reduction in the level of circulating PCSK9 protein and LDL-C <a href="#">[160]</a>     |

HTN: Hypertension; NO: nitric oxide; HF: Heart failure; MI: Myocardial infarction; PDT: Photodynamic therapy; VEGF: Vascular endothelial growth factor; PLGA: Poly lactic-co-glycolic acid; AAV: Adeno-associated virus; HoFH: Homozygous familial hypercholesterolemia; hLDLR: Human low density lipoprotein receptor; TBG: Thyroxine-binding globulin; LDL-C: low density lipoprotein cholesterol.

### 3.7. Intraperitoneal Injection

Intraperitoneal administration, in which therapeutic compounds are injected directly into the peritoneal cavity, is another attractive approach of the parenteral extravascular strategies. It is used specifically for the local treatment of peritoneal cavity disorders, e.g., peritoneal malignancies and dialysis. The peritoneal cavity contains the abdominal organs and the peritoneal fluid, normally composed of water, proteins, electrolytes, immune cells, and other interstitial fluid substances [161]. The high absorption rate associated to IP administration is promoted by the vast blood supply to the peritoneal cavity, along with its large surface area, which is further increased by the microvilli covering the mesothelial layer [162]. Injected compounds can enter the circulatory system after IP injection via both blood and lymphatic capillaries draining the peritoneal submesothelial layer [162][163][164]. Besides, the peritoneal absorption of molecules is greatly affected by their physicochemical characteristics. This route of administration also allows for the injection of large volumes (up to 10 mL) [162]. Extensive experimental studies carried out on animals have revealed that the peritoneal cavity has favorable absorption of lipophilic and unionized compounds [165]. This type of injection is most exploited for preclinical studies, since it is the simplest to perform, especially in small animals and with little impact on the animals' stress [162][166]. IP use in humans is limited, despite showing many benefits in previous studies and even being recommended, for certain types of chemotherapy, by the National Cancer Institute [167][168][169].